1.直接通过字典创建DataFrame 一般创建的方式就是通过字典,因为毕竟键值对的方式是最符合DataFrame的特点的。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 data={'name':['张三','李四','王五'],'city':['Beijing','Shanghai','Guangzhou'],'year':[2001,2005
import pandas as pd # 创建一个 DataFrame data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]} df = pd.DataFrame(data) print(df) (2)如何读取和写入数据(如 CSV、Excel 文件)? 1)将DataFrame的数据写入CSV。 import pandas as pd # 创建一个 DataFrame data = {'Name...
示例:import pandas as pdimport numpy as np# 创建一个带有缺失值的DataFramedata = {'Name': ['John', 'Emma', np.nan],'Age': [25, np.nan, 35],'City': ['New York', 'London', 'Paris']}df = pd.DataFrame(data)print(df)程序输出: Name Age City0 John 25.0 New ...
import pandas as pd # 使用字典创建 DataFrame 并指定列名作为索引 mydata = {'Column1': [1, 2, 3], 'Column2': ['a', 'b', 'c']} df = pd.DataFrame(mydata) df # 输出 Column1 Column2 0 1 a 1 2 b 2 3 c 指定行索引: # 指定行索引 df.index = ['row1', 'row2', '...
近日,在github中查看一些他人提交的代码时,发现了Pandas中这三个函数,在特定场景中着实好用,遂成此...
apply()(column-/ row- /table-wise): 接受一个函数,它接受一个 Series 或 DataFrame 并返回一个具有相同形状的 Series、DataFrame 或 numpy 数组,其中每个元素都是一个带有 CSS 属性的字符串-值对。此方法根据axis关键字参数一次传递一个或整个表的 DataFrame 的每一列或行。对于按列使用axis=0、按行使用...
DataFrame 是一种表格型数据结构,它既有行标签,又有列标签。 3.1 pandas Series结构 Series 结构,也称 Series 序列,是 Pandas 常用的数据结构之一,它是一种类似于一维数组的结构,由一组数据值(value)和一组标签组成,其中标签与数据值之间是一一对应的关系。
DatetimeIndex:时间戳索引容器,当DataFrame/Series的索引为Timestamp对象时自动生成,支持df.index.year快速提取时间组件 Period:表示时间区间的特殊类型,如pd.Period('2025-06', freq='M')创建六月整月对象 Timedelta:时间间隔类型,支持pd.Timedelta(days=2, hours=3)格式化创建 ...
classDataFrame(NDFrame,OpsMixin):_internal_names_set={"columns","index"}|NDFrame._internal_names_set _typ="dataframe"_HANDLED_TYPES=(Series,Index,ExtensionArray,np.ndarray)_accessors:set[str]={"sparse"}_hidden_attrs:frozenset[str]=NDFrame._hidden_attrs|frozenset([])_mgr:BlockManager|ArrayManager...
DatetimeIndex:时间戳索引容器,当DataFrame/Series的索引为Timestamp对象时自动生成,支持df.index.year快速提取时间组件 Period:表示时间区间的特殊类型,如pd.Period('2025-06', freq='M')创建六月整月对象 Timedelta:时间间隔类型,支持pd.Timedelta(days=2, hours=3)格式化创建 ...