根据不同的统计意义,可以选择不同的pandas函数来计算DataFrame对象的平均值。具体的函数包括: DataFrame.mean():计算整个DataFrame对象的平均值。 DataFrame[column].mean():计算DataFrame对象的指定列的平均值。 DataFrame.groupby(column).mean():对DataFrame对象按照指定列进行分组,并计算每个组的平均值。
10.把字符串分割为多列 df = pd.DataFrame({'姓名':['张 三','李 四','王 五'], '所在地':['北京-东城区','上海-黄浦区','广州-白云区']}) df df.姓名.str.split(' ', expand=True) 11.把 Series 里的列表转换为 DataFrame df = pd.DataFrame({'列1':['a','b','c'],'列2':[...
import pandas as pd # 创建一个简单的 DataFrame data = {'Name': ['Alice', 'Bob', 'Charlie...
从dataclass构造DataFrame fromdataclassesimportmake_dataclassPoint=make_dataclass("Point",[("x",int...
一些操作,比如pandas.DataFrame.groupby(),在块方式下要困难得多。在这些情况下,最好切换到一个实现这些分布式算法的不同库。 使用其他库 还有其他类似于 pandas 并与 pandas DataFrame 很好配合的库,可以通过并行运行时、分布式内存、集群等功能来扩展大型数据集的处理和分析能力。您可以在生态系统页面找到更多信息。
apply(func,axis=0):在分组上单独使用函数func返回frame,不groupby用在DataFrame会默认将func用在每个列上,如果axis=1表示将func用在行上。 reindex(index,column,method):用来重新命名索引,和插值。 size():会返回一个frame,这个frame是groupby后的结果。
Example 1: Order Rows of pandas DataFrame by Index Using sort_index() FunctionExample 1 illustrates how to reorder the rows of a pandas DataFrame based on the index of this DataFrame.For this task, we can apply the sort_index function as shown in the following Python code:data_new1 = ...
通过df.sort_values(by = my_column)对Pandas DataFrame进行排序。有许多可用关键字参数。 by:str或str of list,required—要排序的名称或名称列表。如果axis为0或index,那by可能会有索引级别和/或列标签。如果axis为1或columns,则by可能含级别和/或索引标签。 axis:{0或index,1或columns},默认为0—排序轴。
lastEle = df.loc[df.index[-1],column_name] ③访问某一列 df.列名或df['列名']的方式访问某一列 该方式只能访问一列,如果要访问多列请用上文①②讲的方法。 2.5.3、返回DataFrame的array形式:values 返回值类型为numpy.ndarray 只返回DataFrame中的值,而不返回label行和列。
Example: Order pandas DataFrame by Dates Using to_datetime() & sort_values() FunctionsThe following code illustrates how to reorder the rows of a pandas DataFrame by a date column.For this, we first should create a copy of our example data, so that we can keep an original version of ...