import pandas as pd from pandasql import sqldf 复制代码创建一个Pandas DataFrame: data = { 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'salary': [50000, 60000, 70000, 80000] } df = pd.DataFrame(data) 复制代码编写SQL查询语句,并执行查询: query = ...
这里给你介绍个工具:pandasql。...这样我们就可以在 Python 里,直接用 SQL 语句中对 DataFrame 进行操作,举个例子:import pandas as pd 例子: from pandas import DataFrame...[83,"Age"]) print(train_content.loc[82:83,"Name":"Age"]) #还可以跟范围 将Pandas中的DataFrame类型转换成Numpy中array 5...
from pandasql import sqldf1.在这里,我们直接从PandaSQL导入sqldf函数,这实际上是该库的核心特性。顾名思义,sqldf允许你使用SQL语法查询DataFrame。复制 sqldf (query_string env =None)1.在此上下文中,query_string是必需的参数,它接受字符串格式的SQL查询。env参数是可选的,很少使用,可以设置为locals()或...
1. 利用dfSQL从DataFrame变量中查询: 在SmartNoteBook中新建的SQL单元格中,数据源我们选择dfSQL,cars变量是前面我们已经读取到变量空间中的DataFrame变量,则我们可以直接利用SQL语句对变量cars进行查询,所查询到的表结果保存为my_cars变量。 2. 利用dfSQL查询环境中的csv文件: 在上述的SQL单元格中,数据源我们选择dfS...
令人吃惊的是,pandas已经内置了一个query方法,可以让我们就像执行sql一样进行pandas的查询。 这个函数的签名是: DataFrame.query(expr,*,inplace=False,**kwargs)# 最简单的查询。这将返回满足列A大于列B的所有行# 类似于df[df.A > df.B]df.query('A > B') ...
在Pandas dataframe中实现SQL可以通过使用Pandas的SQL接口来实现。Pandas提供了一个名为pandasql的库,它允许我们使用SQL语句来查询和操作Pandas dataframe。 要在Pandas dataframe中实现SQL,可以按照以下步骤进行操作: 安装pandasql库:使用pip install pandasql命令来安装pandasql库。 导入必要的库:在Python脚本中导入pandas...
现在您已设置好一切并准备就绪,您可以使用与 SQL 相同的语法在 DataFrame 中查询数据!这是一个例子——这个查询将从 df 返回前 10 个名称: q ="""SELECT Name FROM df LIMIT 10;"""names=pysqldf(q) names 您查询的复杂性取决于您的需求和您作为数据科学家的技能。因此,如果您习惯于使用 SQL 风格的语法...
使用pandas.io.sql模块中的sql.read_sql_query(sql_str,conn)和sql.read_sql_table(table_name,conn)就好了。第一个是使用sql语句,第二个是直接将一个table转到dataframe中。pandas提供这这样的接口完成此工作——read_sql()。下面我们用离子来说明这个方法。我们要从sqlite数据库中读取数据,引入相关模块...
要在Pandas数据帧上运行SQL查询,可以使用以下语法导入并使用sqldf: 复制 from pandasql import sqldf sqldf(query, globals()) 1. 2. 其中: query表示想要在Pandas数据帧上执行的SQL查询语句。它应该是一个包含有效SQL查询的字符串。 globals()指定了查询中使用的数据帧所在的全局命名空间。