sum_series = series_a + series_b print(sum_series) 什么是 Pandas DataFrame ? Pandas DataFrame 是一种包含行和列的二维表格数据结构。它类似于关系数据库中的电子表格或表格。 DataFrame 具有三个主要组件: 数据,以行和列的形式存储;由索引标记的行;以及带有标签并包含实际数据的列。 从列表、字典创建数据...
首先,我们需要导入Pandas库并创建Series和DataFrame。 import pandas as pd # 创建Series s = pd.Series([1, 2, 3, 4, 5]) print(s) # 创建DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}) print(df) 索引操作我们可以使用标签或位置来索引Series...
Pandas有三种数据结构Series、DataFrame和Panel。 Series类似于数组,DataFrame类似于表格,而Panel则可以视为Excel的多表单Sheet。 1:Series Series 是一种一维数组对象,包含了一个值序列,并且包含了数据标签,称为索引(index),通过索引来访问数组中的数据。 Series的创建 1)通过列表创建 2)通过字典创建 通过列表创建 imp...
Series:是一个值的序列,它只有一个列,以及索引。 DataFrame:是有多个列的数据表,每个列拥有一个 label,当然,DataFrame 也有索引。 首先我们导入包: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 In [1]: from pandas import Series, DataFrame In [2]: import pandas as pd 下面我们将详细介绍Series...
1 创建 Series 2 自定义索引 3 字典转 Series 4 NumPy 数组转 Series 5 Series 转换为 List 和 NumPy 数组 四 数据表 DataFrame 1 二维数组转 DataFrame 2 自定义列名 3 Series 转 DataFrame 4 合并两个 Series 成为 DataFrame 5 自定义特殊的索引 6 获取索引值和列名 7 JSON 数据转换成 DataFrame 五DataF...
其中Series和DataFrame是两种常见的数据结构,Time-series为时间序列,这里暂且不去详细讲解。 一、Series Series是一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算...
df = pd.DataFrame(data, columns=list('ABCD'))print(df)`DataFrame` 提供了强大的数据操作能力,包括数据过滤、分组、合并等。此外,还支持读取和写入多种格式的数据文件,如CSV、Excel、SQL数据库等,极大地扩展了其应用范围。总之,掌握Pandas中的`Series`和`DataFrame`是进行数据科学工作的基础,熟练运用这些...
当直接传入一个字典,字典中的每一项都是一个Series对象时,如果Series之间的索引不相同,则默认创建的DataFrame中每个Series为字典中所有Series的并集 d = { "one": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "two": pd.Series([1.0, 2.0, 3.0, 4.0], index=["a", "b", "c", ...
利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对Series 的重新索引操作 重新索引指的是根据index参数重新进行排序。如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行。不想用缺失值,可以用 fill_value 参数指定填充值。
一、DataFrame的数据查询 / 提取 1、对单列、多列进行访问读取 -- 对单列数据的访问:DataFrame的单列数据为一个Series。根据DataFrame的定义可以知晓DataFrame 是一个带有标签的二维数组,每个标签相当每一列的列名;如:df.a df['a'] -- 对多列数据访问:访问DataFrame多列数据可以将多个列索引名称视为一个列表,...