df.Dataframe(data,index) 1.data类型是字典 字典由series构成 >>>import pandasas pd>>>#由series构成>>> d={'a':pd.Series([1,2,3,4]),'b':pd.Series([4,3,2,1,0])}>>> df=pd.DataFrame(d)>>> df a b01.0412.0323.0234.014 NaN0>>>#指定Series的index(标签)>>> d={'a':pd.Ser...
import numpy as np import pandas as pd DataFrame构造: 1:直接传入一个由等长列表或NumPy数组组成的字典; 代码语言:javascript 代码运行次数:0 运行 AI代码解释 dict = { "key1": value1; "key2": value2; "key3": value3; } 注意:key 会被解析为列数据,value 会被解析为行数据。 代码语言:javascri...
1、使用DataFrame函数时指定字典的索引index import pandas as pd my_dict = {'i': 1, 'love': 2, 'you': 3} my_df = pd.DataFrame(my_dict,index=[0]).T print(my_df) 2、把字典dict转为list后传入DataFrame import pandas as pd my_dict = {'i': 1, 'love': 2, 'you': 3} my_list...
(1)DataFrame的创建 参数: index:行标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。 columns:列标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。 通过已有数据创建 举例一: 结果: 举例二:创建学生成绩表 使用np创建的数组显示方式,比较两者的区别。
DataFrame.iterrows() 返回索引和序列的迭代器 DataFrame.itertuples([index, name]) Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple. DataFrame.lookup(row_labels, col_labels) Label-based “fancy indexing” function for DataFrame. ...
DataFrame 类方法(211个,其中包含18个子类、2个子模块) >>> import pandas as pd >>> funcs = [_ for _ in dir(pd.DataFrame) if 'a'<=_[0]<='z'] >>> len(funcs) 211 >>> for i,f in enumerate(funcs,1): print(f'{f:18}',end='' if i%5 else '\n') abs add add_prefix ...
5.2 DataFrame相加 对于DataFrame,对齐会同时发生在行和列上,两个DataFrame对象相加后,其索引和列会取并集,缺省值用NaN。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 from pandasimportDataFrameimportnumpyasnp kwargs=dict(columns=list('bcd'),index=['北京','上海','广州'])df1=DataFrame(np.arange...
A) Pandas Dataframe B) Pandas Dataframe + 使用pandas chunksize, engine, iterator and memory_map 参数节省内存 C) Dask Dataframe D) Datatable Library E) Modin-Dask/Ray Library F) 其他并行处理库 : swifter, pandaral-lel, dispy, multiprocessing, joblib and many more. ...
import pandas as pd data = {'state':['Ohio','Ohio','Ohio','Nevada'], 'year':[2000,2001,2002,2003], 'pop':[1.5,1.7,3.6,2.4]} frame = pd.DataFrame(data) print(frame) pd1 = pd.DataFrame(data,columns=['year','state','pop'],index=['one','two','three','four']) # 修改行...
DataFrame 一个表格型的数据结构,类似于 Excel 、SQL 表,既有行标签(index),又有列标签(columns),它也被称异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。 DataFrame 的每一行数据都可以看成一个 Series 结构,只不过,DataFrame 为这些行中每个数据值增加了一个...