ref: Ways to filter Pandas DataFrame by column valuesFilter by Column Value:To select rows based on a specific column value, use the index chain method. For example, to filter rows where sales are over 300: Pythongreater_than = df[df['Sales'] > 300]...
importpandasaspd# 创建一个dataframedf=pd.DataFrame({'column1':[1,51,50,100,200],'column2':['pandasdataframe.com1','pandasdataframe.com2','pandasdataframe.com3','pandasdataframe.com4','pandasdataframe.com5']})# 创建一个布尔序列bool_series=df['column1']>50# 使用布尔序列选择行filtered_df...
通过列值过滤Pandas DataFrame的方法 在这篇文章中,我们将看到通过列值过滤Pandas Dataframe的不同方法。首先,让我们创建一个Dataframe。 # importing pandas import pandas as pd # declare a dictionary record = { 'Name' : ['Ankit', 'Swapni
lambda x: all(x.str.contains(w, case=False).any() for w in words_to_keep))] # Filter by column name df = df.filter(like='Status', axis=1) 使用DataFrame.loc按掩码筛选行和列,如果需要按列表筛选,请使用DataFrame.isin,如果需要筛选器scalar,请使用DataFrame.eq和DataFrame.any测试至少一个匹配...
pandas Dataframe filter df = pd.DataFrame(np.arange(16).reshape((4,4)), index=['Ohio','Colorado','Utah','New York'], columns=['one','two','three','four']) df.ix[np.logical_and(df.one !=4, df.three !=6), :3] df[['B1' in x for x in all_data_st['sku']]]status...
import cudf # 创建一个 GPU DataFrame df = cudf.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) 其他代码 第二种是加载cudf.pandas 扩展程序来加速Pandas的源代码,这样不需要更改Pandas的代码,就可以享受GPU加速,你可以理解cudf.pandas 是一个兼容层,通过拦截 Pandas API 调用并将其映射到 cuDF ...
对于Python上的值计数,如果你想对DataFrame中的某一列进行计数,可以使用value_counts()方法: 代码语言:txt 复制 # 对列'A'的值进行计数 count = df['A'].value_counts() print(count) 如果你想对整个DataFrame的行或列进行计数,可以使用shape属性: ...
read_csv函数,读取music.csv文件,存入变量df,此时,df为一个pandas DataFrame。 df = pandas.read_csv('music.csv') df pandas.DataFrame取列操作 此处,取第一列数据: df['Artist'] pandas.DataFrame取行操作 此处,取第二、第三行数据(⚠️注意,df[1:3]不包含左边界): df[1:3] pandas.DataFrame...
df.filter(items=['Q1', 'Q2']) # 选择两列df.filter(regex='Q', axis=1) # 列名包含Q的列df.filter(regex='e$', axis=1) # 以e结尾的列df.filter(regex='1$', axis=0) # 正则,索引名以1结尾df.filter(like='2', axis=0) # 索引中有2的# 索引...
方法描述DataFrame.head([n])返回前n行数据DataFrame.at快速标签常量访问器DataFrame.iat快速整型常量访问器DataFrame.loc标签定位DataFrame.iloc整型定位DataFrame.insert(loc, column, value[, …])在特殊地点插入行DataFrame.iter()Iterate over infor axisDataFrame.iteritems()返回列名和序列的迭代器DataFrame.iterrows(...