df=pd.DataFrame({'name':['张丽华','李诗诗','王语嫣','赵飞燕','阮玲玉'],'sex':['girl','woman',np.nan,'girl','woman'],'age':[22,np.nan,16,np.nan,27]})print(df)print("---how='any'---")# any有空行就删除·all必须都是空行才能删除 df=df.dropna(how='any')print(df) ...
在Pandas 中,我们可以使用 dropna() 方法来从 DataFrame 中删除 NaN。这个方法可以按照不同的方式删除 NaN 值,例如删除包含 NaN 的行或列、删除行或列中的特定元素等。以下是一个示例代码: import pandas as pd df = pd.DataFrame({'A': [1, 2, np.nan, 4], 'B': [5, np.nan, np.nan, 8]})...
import pandas as pdimport numpy as npdf = pd.DataFrame({'name': ['张丽华', '李诗诗', '王语嫣', '赵飞燕', '阮玲玉'],'sex': ['girl', 'woman', np.nan, 'girl', 'woman'],'age': [22, np.nan, 16, np.nan, 27]})print(df)print("---subset---")# subset传的参数是列名...
fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 #只替换第一个缺失值 >>>df.fillna(value=values, limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 房价分析: 在此问题中,只有bedroom...
Thedropna()method can be used to drop rows having nan values in a pandas dataframe. It has the following syntax. DataFrame.dropna(*, axis=0, how=_NoDefault.no_default, thresh=_NoDefault.no_default, subset=None, inplace=False) Here, ...
E -->|填补NaN| G[使用fillna()] F --> H[查看处理结果] G --> H H --> I[结束处理] 三、具体操作步骤 1. 导入所需库 在开始之前,需要导入Pandas库。 importpandasaspd 1. 2. 创建DataFrame 我们将创建一个包含NaN值的示例DataFrame,以便后续处理。
importpandasaspdimportnumpyasnp# 创建包含缺失值的 DataFramedf = pd.DataFrame({'A': [1,2, np.nan],'B': [np.nan,3,4],'C': [5, np.nan,6] })# 至少有 2 个非缺失值的行才保留result = df.dropna(thresh=2) print("至少有 2 个非缺失值的行才保留:\n", result) ...
在dataframe中,处理包含NaN(即“非数字”或“空值”)的数据。你可以使用多种方法来过滤掉包含NaN的行或列。以下是一些常用的方法: 过滤掉包含NaN的行 假设你有一个DataFrame df,你可以使用dropna()方法来过滤掉包含NaN的行。 importpandasaspdimportnumpyasnp# 示例数据data={'A':[1,2,np.nan,4],'B':[np...
: ['New York', None, 'Chicago', 'Boston']} df = pd.DataFrame(data) # 删除包含NaN的行...
2.从总长度中减去 non-NaN 的计数以计算 NaN 的出现次数 我们可以通过从 dataframe 的长度中减去非Na...