在Pandas 中,我们可以使用 dropna() 方法来从 DataFrame 中删除 NaN。这个方法可以按照不同的方式删除 NaN 值,例如删除包含 NaN 的行或列、删除行或列中的特定元素等。以下是一个示例代码: import pandas as pd df = pd.DataFrame({'A': [1, 2, np.nan, 4], 'B': [5, np.
df=pd.DataFrame({'name':['张丽华','李诗诗','王语嫣','赵飞燕','阮玲玉'],'sex':['girl','woman',np.nan,'girl','woman'],'age':[22,np.nan,16,np.nan,27]})print(df)print("---how='any'---")# any有空行就删除·all必须都是空行才能删除 df=df.dropna(how='any')print(df) ...
通过dropna()方法,可以选择丢弃含有NaN的行。例如: df_dropped=df.dropna()print("丢弃含NaN的行后:")print(df_dropped) 1. 2. 3. 方法2:填补NaN 如果希望保留数据的行数,可以选择填补NaN值,例如用均值或中位数来替代NaN: df_filled=df.fillna({'年龄':df['年龄'].mean(),'城市':'未知'})print("...
import pandas as pdimport numpy as npdf = pd.DataFrame({'name': ['张丽华', '李诗诗', '王语嫣', '赵飞燕', '阮玲玉'],'sex': ['girl', 'woman', np.nan, 'girl', 'woman'],'age': [22, np.nan, 16, np.nan, 27]})print(df)print("---subset---")# subset传的参数是列名...
importpandasaspdimportnumpyasnp# 创建包含缺失值的 DataFramedf = pd.DataFrame({'A': [1,2, np.nan],'B': [np.nan,3,4],'C': [5, np.nan,6] })# 至少有 2 个非缺失值的行才保留result = df.dropna(thresh=2) print("至少有 2 个非缺失值的行才保留:\n", result) ...
在dataframe中,处理包含NaN(即“非数字”或“空值”)的数据。你可以使用多种方法来过滤掉包含NaN的行或列。以下是一些常用的方法: 过滤掉包含NaN的行 假设你有一个DataFrame df,你可以使用dropna()方法来过滤掉包含NaN的行。 importpandasaspdimportnumpyasnp# 示例数据data={'A':[1,2,np.nan,4],'B':[np...
: ['New York', None, 'Chicago', 'Boston']} df = pd.DataFrame(data) # 删除包含NaN的行...
答案: 在使用 Pandas DataFrame 进行数据分析的过程中,有时会遇到需要删除包含 NaN(缺失值)的行的情况。为了实现这一目标,我们可以使用列条件进行操作。 首先,我们需要使用 Pa...
DataFrame.drop() 删除指定的行或列。 DataFrame.rename() 重命名行索引或列名。 DataFrame.set_index() 将指定列设置为索引。 DataFrame.reset_index() 重置索引。 DataFrame.sort_values() 按值排序。 DataFrame.sort_index() 按索引排序。 DataFrame.replace() 替换DataFrame 中的值。 DataFrame.append() 追加...
# columns(行索引可多可少:多的为NaN,少的不显示) DataFrame属性:values、columns、index、shape df1.values--打印value值 df1.columns--打印列索引 df1.shape--打印形状 df1.index--打印行索引 # ndarray对象创建 df2 =DataFrame(data=np.random.randint(0,100,size=(5,4)), ...