在Pandas库中,DataFrame.drop() 用于移除DataFrame中的行或列。 df.drop(labels =None, axis =0, index =None, columns =None, level =None, inplace =False,errors ='raise') 参数: 1.labels:要删除的列或者行,如果要删除多个,传入列表 2.axis:轴的方向,0为行,1为列,默认为03.index:指定的一行或...
DataFrame.drop(labels, axis=0, index=None, columns=None, inplace=False, errors='raise') labels:要删除的行或列的标签,可以是单个标签或标签列表。 axis:指定删除的方向。0 表示删除行(默认),1 表示删除列。 index:替代 labels,专门用于删除行的标签。 columns:替代 labels,专门用于删除列的标签。 inplac...
DataFrame.drop_duplicates(subset=None,keep='first',inplace=False,ignore_index=False) 这个方法默认是去除每一行中的重复行,可以指定特定的去重的columns参数位subset。 keep{‘first’, ‘last’, False}, default ‘first’ Determines which duplicates (if any) to keep. -first: Drop duplicates except for...
import pandas as pd # 创建一个示例DataFrame data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]} df = pd.DataFrame(data) # 要删除的列名列表 columns_to_drop = ['B', 'C'] # 使用drop()函数删除列 df = df.drop(columns_to_drop, axi...
pandas中drop()函数用法 函数定义:DataFrame.drop(labels=None,axis=0, index=None, columns=None,inplace=False)删除单个行axis=0,指删除index,因此删除columns时要指定axis=1删除多个行axis=0,指删除index,因此删除columns时要指定axis=1在没有取行名或列名的情况下,可以按一下方式删除行或列 ...
pandas的drop函数是一个非常有用的函数,它可以帮助我们删除DataFrame或Series中的指定行或列。在数据分析过程中,我们经常需要删除一些不需要的行或列,这时候就可以使用pandas的drop函数。 1. 基本用法 pandas的drop函数的基本语法如下: DataFrame.drop(labels=None,axis=0,index=None,columns=None,level=None,inplace...
DataFrame.drop_duplicates(self,subset = None,keep ='first',inplace = False) 返回删除了重复行的DataFrame,可选择仅考虑某些列。包括时间索引在内的索引将被忽略。 例子 1)删除所有列中的重复行 importpandasaspd# 创建示例DataFramedata = {'A': [1,2,2,3,4,4,5],'B': ['a','b','b','c',...
Drop multiple columns Use any of the following two parameters ofDataFrame.drop()to delete multiple columns of DataFrame at once. Use thecolumnparameter and pass the list of column names you want to remove. Set theaxis=1and pass the list of column names. ...
pandas dataframe删除一行或一列:drop函数 【知识点】 用法: DataFrame.drop(labels=None,axis=0,index=None,columns=None, inplace=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; ...
('banana',14,'No','ABC') ,('Orange',34,'Yes','ABC') ]df=pd.DataFrame(fruit_list,columns=['Name','Price','In_Stock','Supplier'])print("DataFrame:")print(df)df_unique=df.drop_duplicates(subset="Supplier",keep="last")print("DataFrame with Unique vales of Supplier Column:")print...