import pandas as pd # 创建一个DataFrame df = pd.DataFrame({ 'A': [1, 2, 3], 'B': [4, 5, 6] }) # 直接赋值增加一列 df['C'] = [7, 8, 9] print(df):使用`concat`方法 ```python filename="add_column_with_concat.py" import pandas as pd # 创建一个DataFrame df = pd.Da...
DataFrame(data) # Using DataFrame.insert() to add a column df.insert(2, "Age", [21, 23, 24, 21], True) # Observe the result print(df) Python Copy输出:方法#3:使用Dataframe.assign()方法这个方法将创建一个新的数据框架,并在旧的数据框架中添加一个新的列。
df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6]})# 在第一列位置插入新列df.insert(1,'NewColumn',[10,20,30])print(df) Python Copy Output: 3. 使用.assign()方法添加列 .assign()方法可以链式添加多个新列,这个方法返回一个新的 DataFrame,原始 DataFrame 不会被修改。 示例代码 3 importpanda...
df['C'] = df.apply(add_column, axis=1) print(df) 输出结果: A B C 0 1 4 6 # (1+4+1=6) 1 2 5 8 # (2+5+1=8) 2 3 6 9 # (3+6+1=9) 注意:使用apply函数添加新列时,需要指定axis=1参数,表示对每一行应用函数。如果不指定该参数,默认情况下会对整个DataFrame应用函数,这可能...
在pandas DataFrame中添加多个列名可以通过以下几种方式实现: 1. 使用列表赋值:可以通过将一个包含多个列名的列表赋值给DataFrame的columns属性来添加多个列名。例如: ...
在Pandas DataFrame 中插入一个新列。幸运的是,使用 pandasinsert()函数很容易做到这一点,该函数使用以下语法: insert(loc, column, value, allow_duplicates=False) 在哪里: **loc:**插入列的索引。第一列是 0。 **column:赋予新列的名称。value:**新列的值数组。 **allow_duplicates:**是否允许新列名匹配...
import pandas as pd def test(): # 读取Excel文件 df = pd.read_excel('测试数据.xlsx') # 插入列 df.insert(loc=2, column='爱好', value=None) # 保存修改后的DataFrame到新的Excel文件 df.to_excel('结果.xlsx', index=False) test() 3、插入多列 假设我需要在D列(班级)后面插入5列,表头名...
df.loc[:,"Column_Total"] = df.sum(axis=1) 2、如果有文字 import pandas as pd data = [('a',1,2,3),('b',4,5,6),('c',7,8,9),('d',10,11,12)]df = pd.DataFrame(data,columns=('col1', 'col2', 'col3','col4'))df.loc['Column_Total']= df.sum(numeric_only=True...
以上创建方式都仅仅做一个了解即可,因为工作中dataframe的数据一般都是来自于读取外部文件数据,而不是自己手动去创建。 常见属性 1.index 行索引 2.columns 列索引 3.T 转置 4.values 值索引 5.describe 快速统计 DataFrame数据类型补充 在DataFrame中所有的字符类型数据在查看数据类型的时候都表示成object ...
worksheet.add_table(0, 0, max_row, max_col - 1, {"columns":column_settings}) worksheet.set_column(0, max_col - 1, 70) 这是工作代码,但我想添加一个这样的字符串 df = pd.DataFrame({ 'metricID': "timeframe" + metric, 'consumo' : "2022-11-10 2022-12-10" + consumo, ...