# 将时间字符串和bool类型强制转换为数字,其他均转换为NaNpd.to_numeric(s,errors='coerce') 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # downcast 可以进一步转化为int或者float pd.to_numeric(s)# 默认float64类型 pd.to_numeric(s,downcast='signed')# 转换为整型 4、转换字符类型 数字转字符类...
In[1]:df.受欢迎度.astype('float')Out[1]:010.016.022.038.047.0Name:受欢迎度,dtype:float64 In[2]:df.astype({'国家':'string','向往度':'Int64'})Out[2]:国家 受欢迎度 评分 向往度0中国1010.0101美国65.872日本21.273德国86.864英国76.6<NA> 3. pd.to_xx转化数据类型 pd.to_xx 3.1. pd.to_d...
4 英国 7 6.6 nan 我们查看dtypes属性 df.dtypes 国家object受欢迎度 int64评分float64向往度 float64dtype: object 可以看到国家字段是object类型,受欢迎度是int整数类型,评分与向往度都是float浮点数类型。而实际上,对于向往度我们可能需要的是int整数类型,国家字段是string字符...
data2 = pd.Series(['apple','1.0','2', -100])print(pd.to_numeric(data2, errors='ignore'))# 不转换print(pd.to_numeric(data2, errors='coerce'))# 错误以NaN替换 4.3 pd.to_timedelta 转换为时间差类型 将数字、时间差字符串like等转化为时间差数据类型。 importnumpyasnpprint(pd.to_timedelta...
comment=None,skip_footer=0,skipfooter=0,convert_float=True,mangle_dupe_cols=True,**kwds) 参数说明: io:文件路径 io = r’D:\test.xlsx’ sheet_name:表名,可指定读取单表、多表、全部表 sheet_name =None# 读取全部表,得到 OrderDict:key为表名,value为 DataFramesheet_name =1/ “Sheet1”# 读...
Theastype(int)method converts a string column to integers when the values are valid integers. Ensure the column has only numeric strings; otherwise, conversion will raise an error. pd.to_numeric()with theerrors='coerce'parameter is useful to handle non-numeric values, converting them to NaN....
要构造一个带有缺失数据的 DataFrame,我们使用 np.nan 来表示缺失值。 或者,您可以将 numpy.MaskedArray 作为数据参数传递给 DataFrame 构造函数,其掩码条目将被视为缺失值。 更多信息请参见缺失数据。 替代构造函数 DataFrame.from_dict DataFrame.from_dict() 接受一个字典的字典或者一个数组序列的字典,并返回一个...
6881 start_slice = 0 File ~/work/pandas/pandas/pandas/core/indexes/base.py:6794, in Index.get_slice_bound(self, label, side) 6790 original_label = label 6792 # For datetime indices label may be a string that has to be converted 6793 # to datetime boundary according to its resolution....
b1.0c2.0d NaN a0.0dtype: float64 注意 NaN(不是一个数字)是 pandas 中使用的标准缺失数据标记。 来自标量值 如果data是一个标量值,则必须提供一个索引。该值将被重复以匹配索引的长度。 In [12]: pd.Series(5.0, index=["a","b","c","d","e"]) ...
DataFrame.to_string(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, min_rows=None, max_cols=None, show_dimensions=False, decimal='.', line_width=None, ma...