# Now we will convert it from 'int' to 'float' type # using DataFrame.astype() function df['Weight']=df['Weight'].astype(float) print() # lets find out the data type after changing print(df.dtypes) # print data
#Now we will convert it from'int'to'float'type#using DataFrame.astype()functiondf['Weight'] = df['Weight'].astype(float) print()#lets find out the datatypeafter changingprint(df.dtypes)#printdataframe.df 输出: 在上面的示例中,我们将“重量”列的数据类型从 ‘int64’ 更改为 ‘float64’。
def convert_currency(value): """ 转换字符串数字为float类型 - 移除 ¥ , - 转化为float类型 """ new_value = value.replace(',', '').replace('¥', '') return np.float64(new_value) # 使用自定义函数转换货币形式 df['money_float'] = df['money'].apply(convert_currency) 红框为转换后...
数值类型包括int和float。 转换数据类型比较通用的方法可以用astype进行转换。 pandas中有种非常便利的方法to_numeric()可以将其它数据类型转换为数值类型。 pandas.to_numeric(arg, errors='raise', downcast=None) arg:被转换的变量,格式可以是list,tuple,1-d array,Series errors:转换时遇到错误的设置,ignore,rais...
If we insert a NaN value in an int column, pandas will convert int values to float values which is obvious but if we insert a nan value in a string column, it will also convert the int value to float value hence it recasts a column on insertion in another column. ...
问题是你得到的NaN值是float,所以int被转换为float-参见na类型的促销。一种可能的解决方案是将NaN值...
By using pandas DataFrame.astype() and pandas.to_numeric() methods you can convert a column from string/int type to float. In this article, I will explain
评分float64 向往度 float64dtype:object 可以看到国家字段是object类型,受欢迎度是int整数类型,评分与向往度都是float浮点数类型。而实际上,对于向往度我们可能需要的是int整数类型,国家字段是string字符串类型。 那么,我们可以在加载数据的时候通过参数dtype指定各字段数据类型。
to_numeric函数 如果想把变量转换为数值类型(int,float),还可以使用pandas的to_numeric函数 DataFrame每一列的数据类型必须相同,当有些数据中有缺失,但不是NaN时(如missing,null等),会使整列数据变成字符串类型而不是数值型,这个时候可以使用to_numeric处理 ...
Convert the string number value to a float - Remove $ - Remove commas - Convert to float type """ new_val = val.replace(',','').replace('$', '') return float(new_val) 1. 2. 3. 4. 5. 6. 7. 8. 9. 该代码使用 python 的字符串函数去除“$”和“,”,然后将值转换为浮点数...