# 将时间字符串和bool类型强制转换为数字,其他均转换为NaNpd.to_numeric(s,errors='coerce') 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # downcast 可以进一步转化为int或者float pd.to_numeric(s)# 默认float64类型 pd.to_numeric(s,downcast='signed')# 转换为整型 4、转换字符类型 数字转字符类...
df['date'] = pd.to_datetime(df['date']) 接下来,可以使用DatetimeIndex对象的year和quarter属性分别获取年份和季度的整数值。可以使用以下代码将其转换为整数: 代码语言:txt 复制 df['year'] = df['date'].dt.year df['quarter'] = df['date'].dt.quarter 通过以上步骤,我们可以将年份和季度转换为整...
df['a_int'] = pd.to_numeric(df['a'], errors='coerce').fillna(0) 红框为转换后数据 所属组数据列中包含一个非数值,用astype()转换会出现错误,然而用to_numeric()函数处理就优雅很多。 3.2to_datetime # 定义转换前数据 df = pd.DataFrame({'month': [5, 5, 5], 'day':[11, 3, 22], ...
在pandas 1.0 中,引入了一种新的转换方法.convert_dtypes。它会尝试将Series 换为支持 pd.NA 类型。以city_mpg 系列为例,它将把类型从int64转换为Int64: >>>city_mpg.convert_dtypes()01919223310417..41139194114020411411841142184114316Name: city08, Length:41144, dtype: Int64>>>city_mpg.astype('Int16')019...
dtype: datetime64[ns] 3.2. pd.to_numeric转化为数字类型 In [17]: s = pd.Series(['1.0', '2', -3])In [18]: pd.to_numeric(s)Out[18]: 0 1.01 2.02 -3.0dtype: float64In [19]: pd.to_numeric(s, downcast='signed')Out[19]: 0 11 22 -...
2024-02-08 72024-02-09 42024-02-10 32024-02-11 7Freq: D, dtype: int32 2.2 时间转换方法 pd.to_datetime(["2024.02.08","2024.02.09"])DatetimeIndex(['2024-02-08', '2024-02-09'], dtype='datetime64[ns]', freq=None)# 时间戳 -> 时间pd.to_datetime([1899678987...
df['float_col'] = df['float_col'].astype('int') 或者我们将其中的“string_col”这一列转换成整型数据,代码如下 df['string_col'] = df['string_col'].astype('int') 当然我们从节省内存的角度上来考虑,转换成int32或者int16类型的数据, ...
不是数字格式# Month,Day以及Year应该转化为datetime64[ns]格式# Active 列应该是布尔值# 如果不做数据清洗,很难进行下一步的数据分析,为了进行数据格式的转化,pandas里面有三种比较常用的方法# 1. astype()强制转化数据类型# 2. 通过创建自定义的函数进行数据转化# 3. pandas提供的to_nueric()以及to_datetime...
int_colint64 float_colfloat64 mix_colobject missing_colfloat64 money_colobject boolean_colbool customobject dtype:object 当然了我们也可以调用info()方法来实现上述的目的,代码如下 df.info() output <class'pandas.core.frame.DataFrame'> RangeIndex:4entries,0to3 ...
对于变量的数据类型而言,Pandas除了数值型的int 和 float类型外,还有object ,category,bool,datetime类型。 另外,空值类型作为一种特殊类型,需要单独处理,这个在pandas缺失值处理一文中已详细介绍。 数据处理的过程中,经常需要将这些类型进行互相转换,下面介绍一些变量类型转换的常用方法。