# Convert data type of Order Date column to datedf["Order Date"] = pd.to_datetime(df["Order Date"])to_numeric()可以将列转换为数字数据类型(例如,整数或浮点数)。# Convert data type of Order Quantity column to numeric data typedf[
By using pandasDataFrame.astype()andpandas.to_numeric()methods you can convert a column from string/int type to float. In this article, I will explain how to convert one or multiple string columns to float type using examples. Advertisements Key Points – Usepd.to_numeric()to convert a col...
importpandasaspd# 创建一个包含浮动数据的Seriesdata = pd.Series([1.5,2.5,3.5,4.5])# 使用 pd.to_numeric() 方法将数据转换为整数,并且下行缩减内存numeric_data = pd.to_numeric(data, downcast='integer')# 输出转换后的结果print(numeric_data) 4)用于 DataFrame importpandasaspd# 创建DataFramedf = pd...
0to1Datacolumns(total3columns):# Column Non-Null Count Dtype---0year2non-nullint641month2non-nullobject2day2non-nullint64dtypes:int64(2),object(1)memory usage:176.0+bytes 此外这里再延伸一下,去掉
我们可以进一步将数值列降级为它们的最小类型,使用pandas.to_numeric()。 代码语言:javascript 代码运行次数:0 运行 复制 In [20]: ts2["id"] = pd.to_numeric(ts2["id"], downcast="unsigned") In [21]: ts2[["x", "y"]] = ts2[["x", "y"]].apply(pd.to_numeric, downcast="float")...
例如TypeError: Could not convert ace to numeric),那么你可能有pandas>=2.0。
df['mix_col'] = pd.to_numeric(df['mix_col'], errors='coerce') df output 而要是遇到缺失值的时候,进行数据类型转换的过程中也一样会出现报错,代码如下 df['missing_col'].astype('int') output ValueError: Cannot convert non-finite values (NA or inf) to integer ...
方法二:使用to_numeric()将对象转为浮点数 以下代码显示了如何使用to_numeric()函数将 DataFrame 中的点列从对象转换为浮点数: #convert points columnfromobjecttofloatdf['points'] = pd.to_numeric(df['points'], errors='coerce') #view updated DataFrame ...
nan, 5]})转换前数据# 数据转换,如遇到NaN数据时,用0来填充 df['a_int'] = pd.to_numeric(...
To save memory, you can use the downcast parameter inpd.to_numeric()to convert the column to a smaller integer type likeint8orint16. Related:In Pandas, you can alsoconvert column to string type. Quick Examples of Convert Column to Int in DataFrame ...