Method 4 : Convert string/object type column to int using astype() method Here we are going to convert the string type column in DataFrame to integer type usingastype()method. we just need to pass int keyword inside this method. Syntax: dataframe['column'].astype(int) where, dataframe is...
df.info()>><class'pandas.core.frame.DataFrame'>RangeIndex:6entries,0to5Datacolumns(total4columns):# Column Non-Null Count Dtype---0a6non-nullint641b6non-nullbool2c6non-nullfloat643d6non-nullobjectdtypes:bool(1),float64(1),int64(1),object(1)memory usage:278.0+bytes 2、转换数值类型 数...
向往度 float64dtype:object 可以看到国家字段是object类型,受欢迎度是int整数类型,评分与向往度都是float浮点数类型。而实际上,对于向往度我们可能需要的是int整数类型,国家字段是string字符串类型。 那么,我们可以在加载数据的时候通过参数dtype指定各字段数据类型。 代码语言:javascript 代码运行次数:0 运行 AI代码解...
可以看到国家字段是object类型,受欢迎度是int整数类型,评分与向往度都是float浮点数类型。而实际上,对于向往度我们可能需要的是int整数类型,国家字段是string字符串类型。 那么,我们可以在加载数据的时候通过参数dtype指定各字段数据类型。 import pandas as pddf = pd.read_exce...
RangeIndex: 4 entries, 0 to 3 Data columns (total 8 columns): # Column Non-Null Count Dtype --- --- --- --- 0 string_col 4 non-null object 1 int_col 4 non-null int64 2 float_col 4 non-null float64 3 mix_col 4 non-null ...
兼容的JSON字符串可以由to_json()使用相应的orient值生成。 dtype # 指定待读取列数据的类型,支持类型:dict\default None convert_dates # 尝试解析日期,同parse_dates encoding # default "uft-8" nrows # int,optional,待读取的行数 栗子。 io3=r"F:\课程资料\Python机器学习\train_order.json" df5=pd....
Example 1: Convert Boolean Data Type to String in Column of pandas DataFrame In Example 1, I’ll demonstrate how to transform a True/False logical indicator to the string data type. For this task, we can use the map function as shown below: ...
或者我们将其中的“string_col”这一列转换成整型数据,代码如下 df['string_col']=df['string_col'].astype('int') 当然我们从节省内存的角度上来考虑,转换成int32或者int16类型的数据, df['string_col']=df['string_col'].astype('int8')
->1121returnself._get_value(key)1123# Convert generator to list before going through hashable part1124# (We will iterate through the generator there to check for slices)1125ifis_iterator(key): File ~/work/pandas/pandas/pandas/core/series.py:1237,inSeries._get_value(self, label, takeable)...
Returns --- str Complete memory usage as a string formatted for MB. """ return f'{df.memory_usage(deep=True).sum() / 1024 ** 2 : 3.2f} MB'def convert_df(df: pd.DataFrame, deep_copy: bool = True) -> pd.DataFrame: """Automatically converts columns that are worth stored as `...