在这里,我们进行了两个操作,首先是对齐各列变化的差异,为此,align_axis默认设置为1,表格中的各列将从自己和对方交替绘制。 #Align the differences on the columnsfirst_df.compare(second_df) Python Copy 输出: 其次,我们设置了align_axis = 0,这使得表格的行数从自己和他人交替绘制。 # align the difference...
索引和列名相同时使用IIUC:
这里需要的是一个连接,即pd.merge。第一个 Dataframe 是df1,第二个是df2。df2的列称为id和Date。
这里需要的是一个连接,即pd.merge。第一个 Dataframe 是df1,第二个是df2。df2的列称为id和Date。
Why do we need to compare two DataFrames? If we have multiple DataFrames with almost similar values then we are responsible for data ambiguity. The thumb rule is if you have two Datasets having identical data, keep all your data in one data set, you may have to add two or more extra...
看起来您正在尝试使用fuzz.ratio()方法比较df Dataframe 中的行与df_inventory Dataframe 中的行。您...
('data2.csv') # 对比两组数据是否完全相同 are_equal = df1.equals(df2) print(f"The two DataFrames are {'equal' if are_equal else 'not equal'}.") # 如果数据不完全相同,找出不同之处 if not are_equal: comparison = df1.compare(df2) print("Differences between the two DataFrames:") ...
combine_first() Compare two DataFrames, and if the first DataFrame has a NULL value, it will be filled with the respective value from the second DataFrame compare() Compare two DataFrames and return the differences convert_dtypes() Converts the columns in the DataFrame into new dtypes corr(...
We can compare two DataFrames and see the difference using theDataFrame.compare()method. The below example shows the same. #importing pandas as pd import pandas as pd df1 = pd.DataFrame([['Abhishek',100,'Science',90], ['Anurag',101,'Science',85]], columns=['Name', 'Roll No', 'Su...
10.compare 在操作数据时,我们经常希望识别两个DataFrame之间的差异。为了实现这个目的,我们可以使用 compare 方法。 a = pd.DataFrame( data={ "col_1": [1, 2, 3, 4], "col_2": [5, 6, 7, 8], } ) b = pd.DataFrame( data={ "col_1": [1, 2, 3, 9], "col_2": [5, 6, 7,...