方法1:使用单列的NOT IN过滤器我们使用isin()操作符来获取数据框中的给定值,这些值来自于列表,所以我们正在过滤数据框中存在于该列表中的一列值。语法 :dataframe[~dataframe[column_name].isin(list)] Python Copy其中dataframe是输入数据帧 column_name是被过滤的列。 list是该列中要删除的值的列表...
In [26]: import pathlib In [27]: N = 12 In [28]: starts = [f"20{i:>02d}-01-01" for i in range(N)] In [29]: ends = [f"20{i:>02d}-12-13" for i in range(N)] In [30]: pathlib.Path("data/timeseries").mkdir(exist_ok=True) In [31]: for i, (start, end) ...
In [21]: sa.a = 5 In [22]: sa Out[22]: a 5 b 2 c 3 dtype: int64 In [23]: dfa.A = list(range(len(dfa.index))) # ok if A already exists In [24]: dfa Out[24]: A B C D 2000-01-01 0 0.469112 -1.509059 -1.135632 2000-01-02 1 1.212112 0.119209 -1.044236 2000-01...
50000, 60000, 70000] }) # 选择单独的一列,返回一个 Series 对象 age_column = df['Age'] print(age_column) # 选择多个列,返回一个新的 DataFrame 对象 subset_df = df[['Name', 'Sex', 'Income']] print(subset_df)
In [7]: df.info(memory_usage="deep") <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 8 columns): # Column Non-Null Count Dtype --- --- --- --- 0 int64 5000 non-null int64 1 float64 5000 non-null float64 2 datetime64[ns] 5000...
In [8]: pd.Series(d) Out[8]: b1a0c2dtype: int64 如果传递了索引,则将从数据中与索引中的标签对应的值提取出来。 In [9]: d = {"a":0.0,"b":1.0,"c":2.0} In [10]: pd.Series(d) Out[10]: a0.0b1.0c2.0dtype: float64
对list 执行 append 的时候,会直接修改在原来的 list 上 在DataFrame最后增加一个光有列名的空列: mydf['列名'] = None 三、数据提取 (一)按列提取 法一: df['column_name'] (二)按行提取 法一: df.loc['index_name'] 四、 对于存着元祖/列表的列进行分列,一列变多列: # 通过apply(pd.Series)...
# We'll use the same dataframe that we used for read_csvframex = df.select_dtypes(include="float64")# Returns only time column 最后,pivot_table() 也是 Pandas 中一个非常有用的函数。如果对 pivot_table() 在 excel 中的使用有所了解,那么就非常容易...
# Column specifications are a list of half-intervals In [189]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)] In [190]: df = pd.read_fwf("bar.csv", colspecs=colspecs, header=None, index_col=0) In [191]: df Out[191]: 1 2 3 0 id8141 360.242940 149.910199 1195...
# create a dataframedframe = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'),index=['India', 'USA', 'China', 'Russia'])#compute a formatted string from eachfloating point value in framechangefn = lambda x: '%.2f' % x# Make changes element-wisedframe['d'].map(change...