DataFrame、Index、Column、Axis、数据和缺失值是Pandas中非常重要的概念,熟练掌握它们将有助于你进行数据处理和分析。
在Pandas中,可以使用`index`和`columns`属性来获取数据帧中的行号和列号。 要获取行号,可以使用`index`属性。它返回一个表示数据帧索引的对象,可以通过调用`tolist()`...
在Pandas中,对于index和column的引用和处理,是我们对于数据进行灵活提取与操作的制胜秘诀。如果数据是木偶,那么index和column就是我们拿在手里的一根根提线。因此,熟练掌握对于index和column的操作对我们的数据分析至关重要。 修改一个DataFrame的columns的name(重命名列名): dataframe[column_name].rename('industry') ...
index和column直接传入mapper或者字典的形式。 axis:int或str,与mapper配合使用。可以是轴名称(‘index’,‘columns’)或数字(0,1)。默认为’index’。 copy:boolean,默认为True,是否复制基础数据。 inplace:布尔值,默认为False,是否返回新的DataFrame。如果为True,则忽略复制值。 代码语言:javascript 代码运行次数:...
import pandas as pd # 使用字典创建 DataFrame 并指定列名作为索引 mydata = {'Column1': [1, 2, 3], 'Column2': ['a', 'b', 'c']} df = pd.DataFrame(mydata) df # 输出 Column1 Column2 0 1 a 1 2 b 2 3 c 指定行索引: # 指定行索引 df.index = ['row1', 'row2', ...
索引的选择主要是基于标签的选择和基于位置的选择,对于索引来说,位置序号默认从0开始,到length(index)-1 结束。 对于数据框而言,如果没有填写row_indexer 或 column_indexer,那么表示所有的row或column。在row_indexer和column_indexer中,可以使用连续的标签,比方说,0:4,表示从0到4的一个range,即0、1、2、3,...
df.iloc[row_index, column_index] # 通过标签或位置选择数据 df.ix[row_index, column_name] # 选择指定的列 df.filter(items=['column_name1', 'column_name2']) # 选择列名匹配正则表达式的列 df.filter(regex='regex') # 随机选择 n 行数据 df.sample(n=5)数据...
df.columns = ['a','b','c'] # 只是简单的把列明替换成abc,实际内容并没有变化 要想实现类似reindex的效果,需要用df=df[['c','b','a']] 4)index注意事项 excel第一列最上面单元格如果为空,read_excel后第一列会成为index 如果是读取该df中的sereis,请注意index会变成1,2,3,4,5…....
df.sort_index(axis=1)# 会把列按列名顺序排列 2、数值排序sort_values() df.Q1.sort_values()df.sort_values('Q4')df.sort_values(by=['team', 'name'],ascending=[True, False]) 其他方法: s.sort_values(ascending=False) # 降序s.sort_values(inplace=True...
index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis']) mapping = {'a':'red', 'b':'red', 'c':'blue', 'd':'blue', 'e':'red', 'f':'orange'} by_column = people.groupby(mapping, axis=1) by_column.sum() 公众号 程序员阿狗 关于数据分析和Python的经验分享 内容来自百家号 查看...