" 1579 "Use a.empty, a.bool(), a.item(), a.any() or a.all()." 1580 ) ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). 你需要明确选择你想要对 DataFrame 做什么,例如使用 any()、all() 或empty()。或者,你可...
代码语言:javascript 复制 In [97]: dfl.iloc[:, 4] --- IndexError Traceback (most recent call last) Cell In[97], line 1 ---> 1 dfl.iloc[:, 4] File ~/work/pandas/pandas/pandas/core/indexing.py:1184, in _LocationIndexer.__getitem__(self, key) 1182 if self._is_scalar_access(...
你需要明确选择你想要对 DataFrame 做什么,例如使用 any()、all() 或empty()。或者,你可能想要比较 pandas 对象是否为 None: In [12]: if pd.Series([False, True, False]) is not None: ...: print("I was not None") ...: I was not None 下面是如何检查任何值是否为 True: In [13]: if...
CI/TST: Check for tzset in set_timezone (pandas-dev#59893) Sep 26, 2024 scripts BLD: Final release prep for 2.2.3 (pandas-dev#59840) Sep 20, 2024 tooling/debug DEPS: Use ipython run_cell instead of run_code; remove pytest-asyncio (… Nov 7, 2023 typings TYP: update mypy and sma...
("cba"), 3), "nums": np.repeat(range(3), 3)} ...: ) ...: In [68]: df Out[68]: strings nums 0 c 0 1 c 0 2 c 0 3 b 1 4 b 1 5 b 1 6 a 2 7 a 2 8 a 2 In [69]: df.query("strings == 'a' and nums == 1") Out[69]: Empty DataFrame Columns: [stri...
pandas 可以利用PyArrow来扩展功能并改善各种 API 的性能。这包括: 与NumPy 相比,拥有更广泛的数据类型 对所有数据类型支持缺失数据(NA) 高性能 IO 读取器集成 便于与基于 Apache Arrow 规范的其他数据框架库(例如 polars、cuDF)进行互操作性 要使用此功能,请确保您已经安装了最低支持的 PyArrow 版本。
...:foriinrange(10) ...: ] ...: In [5]: ts_wide = pd.concat(timeseries, axis=1) In [6]: ts_wide.head() Out[6]: id_0 name_0 x_0 ... name_9 x_9 y_9 timestamp ...2000-01-0100:00:00977Alice -0.821225... Charlie -0.957208-0.7575082000-01-0100:01:001018Bob -0.21...
Within any jupyter (ipython) notebook executing a cell like this will display a small instance of D-Tale in the output cell. Here are some examples: dtale.showassignmentinstance If you are running ipython<=5.0 then you also have the ability to adjust the size of your output cell for the...
您可以使用lreshape和一个虚拟列作为列A(列数必须相同),然后使用dropna=False,然后使用dropna来删除...
format(df)) Empty DataFrame Columns: [] Index: [] 0 0 12 1 34 0 1 0 12 34 c1 c2 r1 12 34 r2 56 78 c1 c2 r1 12 56 r2 34 78 2.2 数据类型提升 Upcasting 当我们初始化一个包含混合类型的DataFrame时,会按列进行数据类型提升。dtypes属性返回每列的数据类型,并以类型Series的形式显示。