pandas 如何将列数据类型对象转换为浮点型锁定21小时,该答案已被禁止评论,但仍接受其他互动Learn more。你可以试试这是一个浮点值列表。
name object sex object chinese float64 math int64 dtype: object 使用2:自定义函数 In [6]: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 def change_sex(x): # male-0 female-1 return 0 if x == "male" else 1 In [7]: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df["sex...
pct_change,当前元素与前一个元素之间的变化百分比 skew偏态,无偏态(三阶矩) kurt或kurtosis,无偏峰度(四阶矩) cov、corr和autocorr、协方差、相关和自相关 rolling滚动窗口、加权窗口和指数加权窗口 重复数据 在检测和处理重复数据时需要特别小心,如下图所示: drop_duplicates和duplication可以保留最后一次出现的副本,...
Name: A, dtype: float64 In [34]: s[::2] Out[34]: 2000-01-01 0.469112 2000-01-03 -0.861849 2000-01-05 -0.424972 2000-01-07 0.404705 Freq: 2D, Name: A, dtype: float64 In [35]: s[::-1] Out[35]: 2000-01-
one object two object three object df[['two','three']] = df[['two','three']].astype(float) df.dtypes Out[19]: one object two float64 three float64 参考文献 Change data type of columns in Pandas 本文由《纯净的天空》出品。文章地址:...
(axis=1) # 按行计算的和 .pct_change() # 计算与前一个元素的百分比 比如说[1,2,3].pct_change()=[NaN,(2-1)/1,(3-2)/2] 为什么第一个是NaN空值呢,因为第一数前面没有数给他减,给他除了··· .fillna(method='bfill') # backfill/bfill用下一个非缺失值填充该缺失值,因为前一步计算会...
可以看到成交价格、成交数量都是object类型,接下来使用astype()方法将这两列分别转化为float和int类型: ii) pd.to_numeric() to_numeric(arg, errors='raise', downcast=None) 将参数转化为数值类型(numeric type) 默认返回的dtype是'float64'或'int64', 具体取决于提供的数据. 使用'downcast'参数可以 ...
In Example 1, I have explained that data types have a variable length, and for that reason, strings are automatically set to the object dtype. There is usually no reason why you would have to change that data type. However, in this example, I’ll show how to specify the length of a...
to keep track of the parent dataframe (using in indexing(...)4151 See the docstring of `take` for full explanation of the parameters.4152 """-> 4153 result = self.take(indices=indices, axis=axis)4154 # Maybe set copy if we didn't actually change the index.File ~/work/pandas/pandas...
ts_code object trade_date datetime64[ns] close float64 open float64 high float64 low float64 pre_close float64 change float64 pct_chg float64 vol float64 amount float64 数据框中的某日期字符串转换成日期类型: df['trade_date'] = pd.to_datetime(df['trade_date'])...