to_json,to_pickle,to_csv,虽然它们也做得很好,但是csv是保存表最常用的方法。
to_string() # 显示格式化字符 df.to_latex(index=False) # LaTeX tabular, longtable df.to_dict('split') # 字典, 格式list/series/records/index df.to_clipboard(sep=',', index=False) # 存入系统剪贴板 # 将两个表格输出到一个excel文件里面,导出到多个 sheet writer=pd.ExcelWriter('new.xlsx')...
dtype: datetime64[ns] In [566]: store.select_column("df_dc", "string") Out[566]: 0 foo 1 foo 2 foo 3 foo 4 NaN 5 NaN 6 foo 7 bar Name: string, dtype: object
pandas.DataFrame.to_dict pandas.DataFrame.to_excel pandas.DataFrame.to_json pandas.DataFrame.to_html pandas.DataFrame.to_feather pandas.DataFrame.to_latex pandas.DataFrame.to_stata pandas.DataFrame.to_gbq pandas.DataFrame.to_records pandas.DataFrame.to_string pandas.DataFrame.to_clipboard pandas.DataFram...
'tail', 'take', 'to_clipboard', 'to_csv', 'to_dict', 'to_excel', 'to_frame', 'to_hdf', 'to_json', 'to_latex', 'to_list', 'to_markdown', 'to_numpy', 'to_period', 'to_pickle', 'to_sql', 'to_string', 'to_timestamp', 'to_xarray', 'transform', 'transpose', '...
to keep track of the parent dataframe (using in indexing(...)4151 See the docstring of `take` for full explanation of the parameters.4152 """-> 4153 result = self.take(indices=indices, axis=axis)4154 # Maybe set copy if we didn't actually change the index.File ~/work/pandas/pandas...
to_markdown() # 显示 markdown 代码 df.to_string() # 显示格式化字符 df.to_latex(index=False) # LaTeX tabular, longtable df.to_dict('split') # 字典, 格式 list/series/records/index df.to_clipboard(sep=',', index=False) # 存入系统剪贴板 # 将两个表格输出到一个excel文件里面,导出到...
Convert All Columns to Strings If you want to change the data type for all columns in the DataFrame to the string type, you can usedf.applymap(str)or df.astype(str) methods. # Convert entire DataFrame to stringdf=df.applymap(str)print("After converting all columns to string:\n",df....
o path_or_buf:stringorfile handle,defaultNoneo sep:character,default','o columns :sequence, optionalo mode:'w':重o,'a'追加 o index:是否保存行索引 o header:booleanorlistofstring,defaultTrue,是否写进列索引值 Series.to_csv(path=None,index=True,sep=',',na_rep=",float_format=None,header...
utils import dict_merge import string now = pd.Timestamp(pd.Timestamp('now').date()) dates = pd.date_range(now - Day(364), now) num_of_securities = max(old_div(rows, len(dates)), 1) # always have at least one security securities = [ dict(security_id=100000 + sec_id, int_...