(), dtype, copy=True) 505 values = values.reshape(self.shape) 506 C:\Anaconda3\lib\site-packages\pandas\types\cast.py in _astype_nansafe(arr, dtype, copy) 535 536 if copy: --> 537 return arr.astype(dtype) 538 return arr.view(dtype) 539 ValueError: could not convert string to ...
pandas的dataframe数据类型转换在使用pandas库进行数据分析时,有时候会需要将object类型转换成数值类型(float,int),那么如何做呢? 主要有以下三种方法:创建时指定类型,df.astype强制类型转换,以及使用pd.to_numeric()转换成适当数值类型。 一,创建时指定类型二,使用df.astype()强制类型转换三,使用pd.to_numeric ...
问在Pandas中使用agg函数使列从浮动到int不可转换。ENgroupby是Pandas在数据分析中最常用的函数之一。它...
用DataFrame.select_dtypes来只选择特定类型列,然后我们优化这种类型,并比较内存使用量。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df_int=df.select_dtypes(include=['float'])converted_int=df_int.apply(pd.to_numeric,downcast='float')print(df_int.dtypes.iloc[0],df_int.memory_usage(deep=T...
Convert Column to Int (Integer) You can use pandasDataFrame.astype()function to convert column to int(integer). You can apply this to a specific column or to an entire DataFrame. To cast the data type to a 64-bit signed integer, you can use numpy.int64, numpy.int_, int64, or int ...
Value'a'hasdtypeincompatiblewithint64,pleaseexplicitlycasttoacompatibledtypefirst.ser.iloc[1]="a"...
一种解决方法是使用Pandas类型Int64(又名pandas.Int64Dtype())而不是int,这会将NaN转换为pandas.NA:
def udf(x): print(type(x)) return int(x) if isinstance(x,float) else x df[['VAR_NAME','LYM1','LYM2','LYM3','LYM4']].map(udf, na_action='ignore').query('VAR_NAME=="FIN3_0022"') rhshadrachadded Needs InfoClarification about behavior needed to assess issue and removed Needs...
I think you need convert first to numpy array by values and cast to int64 - output is in ns , so need divide by 10 ** 9: df['ts'] = df.datetime.values.astype(np.int64) // 10 ** 9 print (df) datetime ts 0 2016-01-01 00:00:01 1451606401 1 2016-01-01 01:00:01 14516100...
我尝试的第一件事是df['Severity'] = pd.to_numeric(df['Severity'], errors='coerce')。虽然这看起来最初是有效的,但当我写入 csv 时,它又恢复为浮点数。接下来我尝试使用,df['Severity'] = df['Severity'].astype(int)然后又尝试使用,但失败了,df['Severity'] = df['Severity'].astype(int, ...