Python 教学 | Pandas 函数应用(apply/map)【下】mp.weixin.qq.com/s/fQ00QE6anT1alDSgig5b9A Part1前言 上一期文章我们介绍了 Pandas 中的函数应用,学习了apply()函数的基本用法,其中重点讲解的是应用函数修改原有数据字段和生成新的数据字段,这是数据处理中使用频率最高的用法。不过我们的数据需求多种多...
与apply()相同,applymap()和map()只负责“批量”调度处理,批量执行的具体内容,由用户传入的函数决定(自定义或现成的函数)。 1.applymap用法和参数介绍 applymap(self, func, na_action=None, **kwargs) : func: 应用于DataFrame每个元素的函数,这个函数可以是Python内置函数、Pandas或其他库中的函数、自定义函...
applymap(f2)) 运行结果: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 0 1 2 3 0 -0.06 0.84 -1.85 -1.98 1 -0.54 -1.98 -0.86 -2.61 2 -1.28 -1.09 -0.15 0.53 3 -1.36 -2.00 0.37 -2.21 4 -0.56 0.52 -2.01 0.06 排序 1. 索引排序 sort_index() 排序默认使用升序排序,ascending=...
applymap()是与map()方法相对应的专属于DataFrame对象的方法,类似map()方法传入函数、字典等,传入对应的输出结果,不同的是applymap()将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致,譬如下面的简单示例,我们把婴儿姓名数据中所有的字符型数据消息小写化处理,对其他类型则原样...
ignore_index=True ) map Series.map(arg, na_action=None) -> Series map方法适用于Series,它基于传递给函数的参数将每个值进行映射。arg可以是一个函数——就像apply可以取的一样——也可以是一个字典或一个Series。 na_action是指定序列的NaN值如何处理。当设置为"ignore "时,arg将不会应用于NaN值。
在日常的数据处理中,经常会对一个DataFrame进行逐行、逐列和逐元素的操作,对应这些操作,Pandas中的map、apply和applymap可以解决绝大部分这样的数据处理需求。 一,apply apply是指沿着DataFrame的轴(axis)调用一个函数: DataFrame.apply(func, axis=0, raw=False, result_type=None, args=(), **kwargs) ...
map()还有一个参数na_action,类似R中的na.action,取值为'None'或'ingore',用于控制遇到缺失值的处理方式,设置为'ingore'时串行运算过程中将忽略Nan值原样返回。 2.2 apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出,但相较于map()针对单列Series进行...
本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。 二、非聚合类方法 这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby()。
ignore_index=True ) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. map Series.map(arg, na_action=None) -> Series 1. map方法适用于Series,它基于传递给函数的参数将每个值进行映射。arg可以是一个函数——就像apply可以取的一样——也可以是一...
1、应用 apply、map、applymap映射转换 Series与DataFrame对象可以进行行(列)或元素级别的映射转换操作。 对于Series,可以调用apply或map方法。 对于DataFrame,可以调用apply或applymap方法。 map:对当前Series的值进行映射转换。参数可以是一个Series,一个字典或者是一个函数。