import pandas as pd import swifter def target_function(row): return row * 10 def traditional_way(data): data['out'] = data['in'].apply(target_function) def swifter_way(data): data['out'] = data['in'].swifter.apply(target_function)Pandarallel import pandas as pd from panda...
6、筛选df.filter() df.filter(items=['Q1', 'Q2']) # 选择两列df.filter(regex='Q', axis=1) # 列名包含Q的列df.filter(regex='e$', axis=1) # 以e结尾的列df.filter(regex='1$', axis=0) # 正则,索引名以1结尾df.filter(like='2', axis=0) #...
Replacing all values in a column, based on conditionThis task can be done in multiple ways, we will use pandas.DataFrame.loc property to apply a condition and change the value when the condition is true.Note To work with pandas, we need to import pandas package first, below is the ...
regex: 布尔值,指定是否将pat解释为正则表达式。默认为True,表示将pat作为正则表达式进行匹配。如果设置为False,则将pat解释为字面字符串。 str.startswith(pat, na=np.nan) pat: 要检查开头是否匹配的子字符串。可以是字符串或列表/集合中的多个字符串。 na: 填充缺失值的值。默认为np.nan。当Series中存在缺失...
4.MultiIndex可在 column 上设置 indexs 的多层索引 我们可以使用MultiIndex.from_product()函数创建一个...
df.filter(items=['Q1', 'Q2']) # 选择两列 df.filter(regex='Q', axis=1) # 列名包含Q的列 df.filter(regex='e$', axis=1) # 以e结尾的列 df.filter(regex='1$', axis=0) # 正则,索引名以1结尾 df.filter(like='2', axis=0) # 索引中有2的 # 索引中以2开头、列名有Q的 df.fil...
contains(r'some.regex.*pattern')] 复杂的lambda函数过滤 代码语言:python 代码运行次数:0 运行 AI代码解释 """creating complex filters using functions on rows: http://goo.gl/r57b1""" df[df.apply(lambda x: x['b'] > x['c'], axis=1)] 替换操作 代码语言:python 代码运行次数:0 运行 AI...
apply(df) 图23 设置drop_first为False: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 pdp.OneHotEncode(drop_first=False).apply(df) 图23 2.2.3 text_stages text_stages中包含了对数据框中文本型变量进行处理的若干类,下文只介绍其中我认为最有用的: RegexReplace: 这个类用于对文本型列进行基于...
As theregexis defined, we have to use the following piece of code for filtering DataFrame rows: dataframe.column_name.str.match(regex) Note To work with pandas, we need to importpandaspackage first, below is the syntax: import pandas as pd ...
data['out']=data['in'].parallel_apply(target_function) 通过多线程,可以提高计算的速度,当然当然,如果有集群,那么最好使用dask或pyspark 4、空值,int, Int64 标准整型数据类型不支持空值,所以会自动转换为浮点数。所以如果数据要求在整数字段中使用空值,请考虑使用Int64数据类型,因为它会使用pandas.NA来表示空值...