示例2:使用lambda函数对多个列进行操作 importpandasaspd# 创建一个DataFramedf=pd.DataFrame({'A':[10,20,30],'B':[20,30,40],'C':['pandasdataframe.com','example','test']})# 使用lambda函数将两列数值相加df['A+B']=df.apply(lambdarow:row['A']+row['B'],axis=1)print(df) Python Copy...
'pandasdataframe.com','pandasdataframe.com']})# 使用 apply 和 lambda 来创建一个新列,根据条件修改值df['New Column']=df.apply(lambdarow:row['A']+row['B']ifrow['A']>150elserow['B'],axis=1)print(df)
Apply a lambda function to multiple columns in DataFrame using Dataframe apply() along with lambda and Numpy functions.# Apply function NumPy.square() to square the values of two rows 'A'and'B df2 = df.apply(lambda x: np.square(x) if x.name in ['A','B'] else x) print("After ...
In Pandas, the apply() function can indeed be used to return multiple columns by returning a pandas Series or DataFrame from the applied function. In this article, I will explain how to return multiple columns from the pandas apply() function....
DataFrame([[4, 9], ] * 3, columns =['A', 'B']) print('Data Frame:') display(dataFrame) # Using pandas.DataFrame.apply() on the data frame print('Returning multiple columns from Pandas apply()') dataFrame.apply(lambda x: [1, 2], axis = 1) ...
First let's create duplicate columns by: df.columns = ['Date','Date','Depth','Magnitude Type','Type','Magnitude'] df Copy A general solution which concatenates columns with duplicate names can be: df.groupby(df.columns, axis=1).agg(lambdax: x.apply(lambday:','.join([str(l)forliny...
Lambda including if, elif and else Pandas: Find percentile stats of a given column Count number of non-NaN entries in every column of Dataframe Access Index of Last Element in pandas DataFrame in Python Pandas: Create two new columns in a DataFrame with values calculated from a pre-e...
(3) Using lambda and join df[['Date','Time']].agg(lambdax:','.join(x.values),axis=1).T Copy So let's see several useful examples on how to combine several columns into one with Pandas. Suppose you have data like: 1: Combine multiple columns using string concatenation ...
(4, 9): df.insert(loc=col_num, column=f'列{col_num-3}', value=None) # 如果A列【学号】<10,则E列【列1】填写:是;否则填写:否, df['列1'] = df['学号'].apply(lambda x: '是' if x < 10 else '否') # 保存修改后的DataFrame到新的Excel文件 df.to_excel('结果.xlsx', index=...
评论 In [23]: #行列聚合,这里使用groupby数据分组内容,详细学习groupby函数可参考第三节内容,groupby函数指定分类对象分组 df_group = DP_table.groupby(['区域']).apply(lambda x: x['商品品类'].unique()).reset_index() df_group.rename(columns={0:'商品品类'},inplace=True)#重命名 df_group ....