apply()函数是Pandas中用于对DataFrame或Series对象进行操作的常用函数之一,它接受一个函数作为参数,并将该函数应用于指定的轴(行或列)。 lambda表达式是一种简洁的匿名函数定义方式,常用于临时创建简单的函数,它可以包含条件语句和表达式。 结合apply()和lambda,我们可以实现对DataFrame中的特定列进行条件判断,并根据条件...
添加多个If语句现在,要向lambda函数添加多个if语句,我们不能像前面的例子那样直接在一行中添加。如果我们添加一个以上的if语句,或者添加一个elif语句,就会出现错误。df['Maths_spl Class'] = df["maths"].apply( lambda x: "No Need" if x>=5 elif x==5 "Hold" else "Need") Python Copy...
apply(lambda x: 'True' if x <= 4 else 'False') print (df) 查询结果如下,与案例1相同 (3) IF condition – strings 现在,我们创建一个仅包含Jon, Bill, Maria and Emma等文本内容的DataFrame,IF 条件如下: 当name是Bill时,填值 Match 当name不是Bill时,填值 Mismatch 实现代码如下: 代码语言:...
df['Classification']=df['Size'].apply(lambda x: ">1bi" if 1000000000 < x else pass) 计算出“通过”似乎也不适用于 lambda 函数: df['Classification']=df['Size'].apply(lambda x: "<1m" if x<1000000 else pass) SyntaxError: invalid syntax 关于Pandas 中 apply 方法中 lambda 函数内多个 if...
根据不同情况,在lambda中增加多个if判断条件 格式: df.apply(lambda x: A if …… else B if…… else C, axis=1) df['test']=df.apply(lambdax:'123'ifx['省份']=='北京'else'456'ifx['省份']=='上海'else'789',axis=1)print(df)省份城市区人口GDP气温地形气温.1test0北京北京崇文45611121平...
然后我们通过结合apply方法和lambda方法应用到数据集当中去 。 复制 new_df= df[df.apply(lambda x : bool_provider(x['Revenue(Millions)'],x['Year']),axis=1)] 1. 2. 我们筛选数据的时候,主要是用.loc方法,它同时也可以和lambda方法联用,例如我们想要筛选出评分在5-8分之间的电影以及它们的票房,代码...
一种方法是首先使用 apply 创建一个标题中不包含任何单词的列,然后对该列进行过滤。 #创建一个新列 #create a new columndf['num_words_title']=df.apply(lambdax:len(x['Title'].split(" ")),axis=1)#simple filter on new columnnew_df=df[df['num_words_title']>=4] ...
df['C'] = df.apply(lambda row: func(row['A'], row['B']), axis=1) 在这个例子中,我们使用了lambda函数来将每一行的数据作为参数传递给我们的函数,axis=1表示我们希望对每一行进行操作,而不是对每一列。 注意:虽然这种方法可以模拟elif语句的功能,但是它并不是最佳的解决方案,在pandas中,更常见的做...
我在尝试: frame['d']=frame.apply(lambda x: frame['c'] if frame['c']>0 else frame['b'],axis=0) 但是得到“ValueError: (‘The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().’, ‘occurred at索引 a’) ...
Python。在 Pandas 数据框中使用 Lambda 函数的 IF 条件df = pd.read_csv('data/eurusd_dukascopy.csv') df.columns = ['timestamp', 'open', 'high', 'low', 'close', 'volume'] df['oc'] = df.close - df.opendf['uptail'] = df['oc'].apply(lambda x: (df.high - df.close) if ...