使用apply函数,你可以同时修改多列的数据。 示例代码 4:修改多列 importpandasaspd# 创建 DataFramedf=pd.DataFrame({'A':range(1,6),'B':[10*xforxinrange(1,6)],'C':['pandasdataframe.com'for_inrange(5)]})# 定义一个函数,操作多列defmodify_columns(row):row['A']=row['A']*100row['B'...
Python program to apply function to all columns on a pandas dataframe# Importing pandas package import pandas as pd # Creating two dictionaries d1 = { 'A':[1,-2,-7,5,3,5], 'B':[-23,6,-9,5,-43,8], 'C':[-9,0,1,-4,5,-3] } # Creating DataFrame df = pd.DataFrame(d...
The following syntax shows to apply a function to multiple columns of DataFrame: df[['column1','column1']].apply(anyFun); Where,column1andcolumn2are the column names on which we have to apply the function, and "function" has some operations that will be performed on the columns. ...
0 or ‘index’:函数按列处理(apply function to each column) 1 or ‘columns’:函数按行处理( apply function to each row) # 只处理指定行、列,可以用行或者列的 name 属性进行限定df5=df.apply(lambdad:np.square(d)ifd.name=="a"elsed,axis=1)print("-"*30,"\n",df5)# 仅对行"a"进行操作...
import pandas as pd # 定义一个函数,该函数将在每一行中应用 def my_function(row): return pd.Series([row['column1'] * 2, row['column2'] * 3]) # 创建一个DataFrame data = {'column1': [1, 2, 3], 'column2': [4, 5, 6]} df = pd.DataFrame(data) # 使用apply函数将my_fu...
function df['new_col'] = df.apply(lambda row : row[0]+row[1]+row[2], axis=1) # Example 3: Add 3 to each column of a row df2 = df.apply(lambda row : pd.Series([row[0]+3,row[1]+3,row[2]+3]), axis=1) # Example 4: Apply function NumPy.sum() to each row df['...
is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. """ 通过函数介绍,我们知道了以下信息: apply会将自定义的func函数应用在dataframe的每列或者每行上面。 func接收的是每列或者每行转换成的一个Series对象,此对象的索引是行索引(对df每列操作...
在pandas中,apply函数用于对数据帧中的每一列或每一行应用指定的函数。而min函数是一个内置函数,用于返回给定序列的最小值。 对于数据帧中的选择列,可以通过以下步骤进行处理: 1. 首先,...
raw : boolean, default False|If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. reduce : boolean or None, default None|Try to apply reduction procedures. args : tuple|函数的参数 ...
Use .apply with axis=1 to send every single row to a function You can also send an entire row at a time instead of just a single column. Use this if you need to use multiple columns to get a result. # Create a dataframe from a list of dictionaries rectangles = [...