决定了学习过程中的采样复杂度,换句话说,这个方程可以看作是,为了保证PAC的话,至少需要采样多少样本。实际训练中,其实上m的方程有很多都是满足条件的,一般选择最小的m满足 , 的PAC学习。 一般情况下这个m可以被一个关于, , 的方程bound住 对于任意有限假设集,都存在这样的一个m满足要求 General Learning Model:...
学习有没有一个综合性的模型指导(Is there a general model of learning)? PAC学习框架(Probably Approximately Correct learning framework)可以解释上述问题。 (The PAC framework helps define the class of learnable concepts in terms of the number of sample points needed to achieve an approximate solution,...
定义1.3 PAC-学习(PAC-learning):我们说一个概念集合 C 是PAC可学习的,当且仅当存在一个算法 $\mathcal{A}$ 以及一个多项式函数 $poly(\cdot,\cdot,\cdot,\cdot)$,使得对任意的 $\epsilon > 0$ 和 $\delta > 0$ 对所有在 $\mathcal{X}$ 上的分布 $D$,以及对所有的目标概念 $c \in C$,当...
2.3 A More General Learning Model 在上面的讨论的基础上,我们可以继续推广学习模型,主要从下面两个方面推广 1. 移除Realizability Assumption Realizability Assumption看似是一个很简单的假设,但是在实践中这个假设相当强,毕竟你没办法保证 hypothesis class中一定有一个hypothesis有那么好,因此我们需要尝试去掉这个过于强...
ChatGPT/OpenAI首席科学家【元学习和自我博弈之术Meta Learning and Self Play】—Ilya Sutskever 01:00:28 (国外超火博主)变分推断 | 证据下界 | 直觉和可视化 25:11 【通过 PAC-Bayes 研究深度学习中的泛化问题】—金塔尔·卡罗琳娜·吉盖特 Gintare Karolina Dziugaite 44:18 【无限宽度神经网络】 01:34...
A PAC-Style Model for Learning from Labeled and Unlabeled Data There has been growing interest in practice in using unla-beled data together with labeled data in machine learning, and a number of different approaches h... MF Balcan,A Blum - Learning Theory: Conference on Learning Theory ...
Pacman-Machine-Learning:我的机器学习课程的作业。 构造了许多不同的搜索算法,以一种有效的方法引导吃豆人渡过各种迷宫 (0)踩踩(0) 所需:1积分 oracle驱动包11.2.0.4.rar 2024-12-27 05:43:14 积分:1 nvidia-fabric-manager安装包 2024-12-27 05:03:44 ...
The Probably Approximately Correct (PAC) learning model, which has received much attention recently in the machine learning community, attempts to formalize the notion of learning from examples. In this paper, we review several extensions to the basic PAC model with a focus on the information ...
Foundations of Machine Learning: The PAC Learning Framework(1)在计算学习理论,probably approximately correct learning(PAC learning)是分析机器学习的一个数学框架。这个框架解决了这样的一些问题:什么样的概念是能够被有效的学习出来? 要达到一个成功的学习过程,至少要多少样本?(一)PAC 学习模型。
In this article, PAC-learning theory is applied to model inference, which concerns the problem of inferring theories from facts in first order logic. It is argued that uniform sample PAC-learnabilityDOI: 10.1007/3-540-57868-4_60 被引量: 4 年份...