P-tuning V2不是一个新东西,它是Deep Prompt Tuning (Li and Liang,2021;Qin and Eisner,2021)的一个优化和适应实现。与深度提示调整类似,P-tuning v2被设计用于生成和知识探索,但最重要的改进之一是将连续提示应用于预训练模型的每个层,而不仅仅是输入层。 通过增加连续提示的容量,并针对各种设置(特别是针对小...
if model_args.prefix:# 训练方式1:P-Tuning V2(prefix=True)config.hidden_dropout_prob = model_args.hidden_dropout_prob# 0.1config.pre_seq_len = model_args.pre_seq_len# 128config.prefix_projection= model_args.prefix_projection# Falseconfig.prefix_hidden_size= model_args.prefix_hidden_size# 51...
觉得P-Tuning v2里面还有很多知识点没有讲解清楚,只能后续逐个讲解。仅仅一个P-Tuning v2仓库代码涉及的知识点非常之多,首要就是把Transformer和BERT标准网络结构非常熟悉,还有对各种任务及其数据集要熟悉,对BERT变体网络结构要熟悉,对于PyTorch和Transformer库的深度学习模型训练、验证和测试流程要熟悉,对于Prompt系列微调方...
根据我在Langchain-Chatchat仓库中找到的相关问题,你可以通过以下步骤使用ChatGLM-6B P-Tuning v2微调后的模型: 在fastchat\model\model_adapter.py中添加以下代码: defload_ptuning_model(self,model_path:str,ptuning_checkpoint:str,from_pretrained_kwargs:dict):revision=from_pretrained_kwargs.get("revision"...
在本文中,我们将重点介绍Prefix Tuning / P-Tuning v2技术,并通过代码实战案例来展示其应用。Prefix Tuning / P-Tuning v2是一种基于预训练模型微调的方法,其主要思想是在模型训练过程中,通过在输入序列的前面添加特定的前缀(prefix)来引导模型的学习方向。这种方法可以帮助模型更好地理解任务特定的问题,从而提高模型...
12 高效微调方法4:P-Tuning v2是大模型干货教程看这一个就够了~2023年全网最硬核最全面的大模型公开课|大模型微调 | ChatGLM | LangChain的第12集视频,该合集共计20集,视频收藏或关注UP主,及时了解更多相关视频内容。
2.代码执行流程 (1)P-tuning-v2/run.py 根据task_name=="qa"选择tasks.qa.get_trainer 根据get_trainer得到trainer,然后训练、评估和预测 (2)P-tuning-v2/tasks/qa/get_trainer.py 得到config、tokenizer、model、squad数据集、QuestionAnsweringTrainer对象trainer ...
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法 1.SFT 监督微调 1.1 SFT 监督微调基本概念 SFT(Supervised Fine-Tuning)监督微调是指在源数据集上预训练一个神经网络模型,即源模型。然后创建一个新的神经网络模型,即目标模型。目标模型复制了源模型上除了输出...
基于作者的优化与实现细节,P-tuning v2能够实现与Fine-tuning相媲美的性能,显著扩大了其适用范围。值得注意的是,相较于Prefix tuning,P-tuning v2更侧重于提升对NLU任务的适应性。在代码层面,P-tuning v2的核心在于巧妙地利用`past_key_value`参数,实现连续prompt的融入。通过在`RobertaPrefixFor...