1) P Laplace equation P-Laplace 方程 2) p-Laplacian equation P-Laplace方程 1. In this paper we consider the global existence of the solutions of thep-Laplacian equations with particular coefficient. 利用Hardy不等式及Soblev嵌入定理讨论了具特殊系数的P-Laplace方程解的整体存在性,得到对初值u_0∈W~...
The p-Laplace equation is a generalization of the Laplace equation, which is a second-order partial differential equation commonly used in physics and engineering to describe the behavior of scalar fields. The p-Laplace equation is given by: Δ_pu= div(|∇u|^(p-2) ∇u) = 0。 where...
Laplace's equation 以法国P.-S.拉普拉斯命名的二阶偏微分方程。在三维直角坐标系中,它的形式是: 它的二次连续可微解称为调和函数,调和函数有极多的光滑性。拉普拉斯方程在物理吸广泛应用,因为它的解出现在电、磁、引力位势、稳态温度以及流体动力学各方面的问题中。 说明:补充资料仅用于学习参考,请勿用于其它...
网络p-拉普拉斯方程 网络释义 1. p-拉普拉斯方程 拉普拉斯方程,Laplace... ... )p-Laplace equationp-拉普拉斯方程) Laplace method 拉普拉斯方程法 ... www.dictall.com|基于3个网页
1)p-Laplacian equationP-Laplace方程 1.In this paper we consider the global existence of the solutions of the p-Laplacian equations with particular coefficient.利用Hardy不等式及Soblev嵌入定理讨论了具特殊系数的P-Laplace方程解的整体存在性,得到对初值u_0∈W~(1,p)(Ω)当λ<λ_(N,p),对任意的1λ...
关键词: 分数阶 p-Laplacian; 移动平面法; 径向对称; 单调递减 中图分类号: O 175 文献标志码: A 文章编号: 1672–6146(2018)02–0001–04 Symmetry and monotonicity of solutions to a class of fractional p-Laplace equation Wu Jiayan, Yang Liu, Qu Meng (School of Mathematics and Statistics, ...
p-Laplace方程解的存在性 硕士学位论文 (高校教师)p-Laplace方程解的存在性 )(x EXISTENCE OF SOLUTIONS OF )p-LAPLACE EQUATION (x 房维维 哈尔滨工业大学 2009年6月
25 文献标识码 ANODAL RADIAL SOLUTIONS OF THE QUASILINEAR p-Laplace EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT IN RNW EI Ji an FAN Xi an-l i ng (D ept of M at hem at i cs Lanzhou U ni versi t y, Lanzhou 730000, Chi na) ABSTRACT: The exi st ence of nodal radi al sol ut i ...
p-Laplace equationWeak solutionBounded Slope ConditionHilbert–Haar theoryWe give basic definitions and properties of the p-Laplace equation in the Heisenberg group. We establish existence and uniqueness results for the associated Dirichlet problem via variational methods a...
LaplacianEquationWithHardyPotentialYuBoqiang,YaoYangxin,ZhengQiufang.ShenHui(1.DepartmentofMathematics,SchoolofScience,SouthChinaUniversityofTechnology,Guangzhou510640,China)(2.GuangzhouCityConstructionCollege,Guangzhou510900,China)Abstract:Thispaperconsidersasuperlinearp-LaplacianequationwithHardypotentia1.ThankstoHardy’S...