由P(X=1,Y=1)=P(XY=1)=1/3=P(X=1)=P(Y=1)可知 P(X=1,Y=0)=P(X=1,Y=2)=P(Y=1,X=0)=P(Y=1,X=2)=0.(注意P(X=1)=P(X=1,Y=0)+P(X=1,Y=1)+P(X=1,Y=2), 其他类道似专 )P(X=2,Y=2)=P(XY=4)=1/12,P(X=2,Y=0)=P(X=2)-P(X=2,Y=...
解:(1)当h=1时,抛物线的表达式为y=ax2-2ax+a+1,∴y=a(x-1)2+1,∴抛物线的对称轴为直线x=1;(2)设抛物线上四个点的坐标为A(0,yA),B(2,yB),C(4-h,yC),D(5-h,yD),∵a<0,∴y1的最小值必为yA或yB.①由a<0可知,当2≤h≤5/2时,存在y2≥y1,不符合题意....
由条件知可设点M(2y 1 -2,y 1 ),从而d(B,M)=|2y 1 -2-1|+|y 1 |= 很显然当y 1 = 时,d(B,M)取最小值,此时点M的坐标是 .
若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点)....
若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1-y2|;(1)已知点A(-1,0),B为y轴上的动点,①若点A与B的“识别距离为”2,写出满足条件的B点的坐标___.②直接...
在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P1(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“...
由P(X=1,Y=1)=P(XY=1)=1/3=P(X=1)=P(Y=1)可知 P(X=1,Y=0)=P(X=1,Y=2)=P(Y=1,X=0)=P(Y=1,X=2)=0.(注意P(X=1)=P(X=1,Y=0)+P(X=1,Y=1)+P(X=1,Y=2), 其他类道似专 )P(X=2,Y=2)=P(XY=4)=1/12,P(X=2,Y=0)=P(X=2)-P(X=2,Y=...
例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点). (1)已知点A(﹣,0),B为y轴上的一个动点, ...
19.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“友好距离”,给出如下定义: 若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“友好距离”为|x1-x2|; 若|x1-x2|<|y1-y2|,则P1(x1,y1)与点P2(x2,y2)的“友好距离”为|y1-y2|; ...
知识点3 独立性检验(1)零假设$$ H _ { 0 } $$:$$ : P ( Y = 1 | X = 0 ) = P ( Y = 1 | X = 1 ) $$是否成立,通常称$$ H _ { 0 } $$为零假设或原假设.也可改述为 $$ H _ { 0 } $$:分类变量X和Y$$ 立 \cdot x ^ { 2 } = \_ $$(2)临界...