deep prompt tuning增加了continuo us prompts的能力,并缩小了跨各种设置进行微调的差距,特别是对于小型模型和困难任务 上图左边为P-Tuning,右边为P-Tuning v2。P-Tuning v2层与层之间的continuous prompt是相互独立的。 ChatGLM2-6B 模型下载 huggingface 地址:https://huggingface.co/THUDM/chatglm2-6b/tree/main...
--- 4.2 P-tuning v2: 不同规模--- 4.3 P-tuning v2: 跨越任务--- 4.4 消融研究五、相关工作六、总结 一、简介 提示微调,只用一个冻结的语言模型来微调连续的提示,大大减少了训练时每个任务的存储和内存使用。然而,在NLU的背景下,先前的工作显示,提示微调对于正常大小的预训练模型来说表现并不理想。我们还...
P-Tuning v2提升小模型上的Prompt Tuning,最关键的就是引入Prefix-tuning[2]技术。Prefix-tuning(前缀微调)最开始应用在NLG任务上,由[Prefix, x, y]三部分构成,如上图所示:Prefix为前缀,x为输入,y为输出。Prefix-tuning将预训练参数固定,Prefix参数进行微调:不仅只在embedding上进行微调,也在TransFormer上...
https://huggingface.co/datasets/squad_v2 训练集数据如下所示: 验证集数据如下所示: 四.SRL任务 主要是处理脚本P-tuning-v2/tasks/srl/dataset.py文件。语义角色标注(Semantic Role Labeling)的目标主要是识别出句子中Who did What to Whom, When and Where。英文数据集主要有CoNLL-2005...
近日,清华大学发布P-Tuning v2版本,其重点解决了Prompt tuning在小模型上效果不佳的问题(如下图所示),并将Prompt tuning拓展至更复杂的NLU任务,如MRC答案抽取、NER实体抽取等序列标注任务。 论文题目: P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks 论文地址: h...
If you have installed Anaconda3, then create the environment for P-tuning v2: conda create -n pt2 python=3.8.5 conda activate pt2 After we setup basic conda environment, install pytorch related packages via: conda install -n pt2 pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cuda...
P-Tuning v2把continuous prompt应用于预训练模型的每一层,而不仅仅是输入层。 二.P-Tuning v2实现过程 1.整体项目结构 源码参考文献[4],源码结构如下所示: 参数解释如下所示: (1)--model_name_or_path L:/20230713_HuggingFaceModel/20231004_BERT/bert-base-chinese:BERT模型路径 ...
self.ptuning_dir = params.get('ptuning_dir', 'ptuning-v2') self.cpu = params.get('cpu', False) self.gpu_memory = params.get('gpu_memory', None) self.cpu_memory = params.get('cpu_memory', None) 0 comments on commit 75cf9f9 Please sign in to comment. Footer...
P-Tuning v2是一种新型的Prompt-Tuning方法,旨在成为fine-tuning的有效替代方案。通过冻结预训练模型的所有参数,并使用自然语言提示符来查询语言模型,P-Tuning v2在训练过程中大大减少了内存消耗。P-Tuning v2的工作原理P-Tuning v2的核心思想是通过使用自然语言提示符来调整预训练模型。具体来说,它通过在输入文本前...
综上所述,各种微调方法适用于不同的场景和任务。SFT监督微调适用于快速适应目标任务,LoRA适用于减少参数量和成本,P-tuning v2适用于多任务学习,而Freeze适用于提取特定层次的特征。 1.下载glm2训练脚本 git clonehttps://github.com/THUDM/ChatGLM2-6B.git ...