换言之,P-tuning做法是用一些伪prompt代替这些显式的prompt (说白了,将自然语言提示的token,替换为可训练的嵌入)具体的做法是可以用预训练词表中的unused token作为伪prompt「BERT的vocab里有unused 1 ~ unused99,就是为了方便增加词汇的」,然后通过训练去更新这些token的参数也就是,P-tuning的prompt Prompt不是显...
P-Tuning是为了解决NLU任务而设计的Soft prompts方法,P-tuning添加了一个可训练的嵌入张量,这个张量可以被优化以找到更好的提示,并且它使用一个提示编码器(例如BiLSTM+MLP)来优化提示参数。 技术解读 P-tuning有两个版本,P-tuning v1(2021年)和P-tuning v2(2023年)。P-tuning v1通过使用一个prompt encoder(例...
近日,清华大学发布P-Tuning v2版本,其重点解决了Prompt tuning在小模型上效果不佳的问题(如下图所示),并将Prompt tuning拓展至更复杂的NLU任务,如MRC答案抽取、NER实体抽取等序列标注任务。 论文题目: P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks 论文地址: h...
P-tuning v1 代码地址:https://github.com/THUDM/P-tuning a图:离散式的 Prompt Tuning b图:隐式的 P-Tuning P-Tuning v1 是一种使用可微的虚拟标记替换离散标记的方法,该方法仅将虚拟标记添加到输入层,并使用 prompt 编码器(BiLSTM+MLP)对虚拟标记进行编码学习。 类似Prefix-Tuning,添加向量 举个例子,假...
3. P-tuning v2 微调方法 3.1 P-tuning v2 微调方法的相关技术 传统的微调方法需要微调整个预训练语言模型,对于大语言模型的微调需要大量的资源和时间,急需更加高效的微调方法。理解 P-tuning v2 微调方法,首先需要了解 prefix-tuning 微调方法和 P-tuning v1 微调方法。3.1.1 Prefix-tuning 微调方法 Prefix...
12 高效微调方法4:P-Tuning v2是大模型干货教程看这一个就够了~2023年全网最硬核最全面的大模型公开课|大模型微调 | ChatGLM | LangChain的第12集视频,该合集共计20集,视频收藏或关注UP主,及时了解更多相关视频内容。
大模型微调作为大语言模型定制化开发的关键技术,在整个大语言模型技术应用落地过程扮演者不可或缺的重要角色~视频将为大家详细介绍目前最通用的微调技术,包括高效微调(PEFT)的系列方法:LoRA、Prefix-Tuning、Prompt-Tuning、P-Tuning v2等,以及最新的基于生物反馈机制的强化学习微调方法RLHF,帮助大家一步到位快速建立技术...
P-Tuning v2固定住了所有其他token对应的参数,每一层输入进transformer的时候只有prompt参数需要训练;而P-Tuning v1则只有transformer第一层对应的prompt需要训练。所以可以说P-Tuning v1对应着VPT-Shallow,P-Tuning v2对应着VPT-Deep。这也给了我们一个提示:nlp的prompt发展了那么久,虽然CV的prompt和nlp的prompt会不...
P-Tuning v2的提出针对前代方法的不足,通过深度提示优化改进Prompt Tuning和P-Tuning,实现跨规模和NLU任务的通用解决方案。其技术原理在于在每一层加入Prompt tokens作为输入,相较于仅在输入层加入的策略,P-Tuning v2在复杂任务中表现出与全参数微调相匹敌的性能,尤其在序列标注任务上取得了显著优势,...
具体而言,Prefix-tuning在NLG任务中应用,通过Prefix、输入、输出三部分组成,Prefix-tuning对预训练参数进行固定,而Prefix参数则进行微调,包括在embedding层的输入进行调整。P-Tuning v2将此技术应用于NLU任务,显著提升了效果。在参数训练上,P-Tuning v2实际上就是Prefix-tuning。与P-Tuning v1相比,v2...