在模型微调时,W0被冻结,不接受梯度更新,只微调参数A和B。与所有参数参与模型微调相比,此时该步骤模型微调的参数量由d×k变成d×r+r×k,而r≪min(d,k),因此微调参数量大量减少了。 如下图所示,LoRA 微调时,对A使用随机高斯初始化,对B使用零初始化,因此ΔW=BA在训练开始时为零。 对Transformer 的每...
p tuning v2 soft prompt比较依靠模型参数量,在参数量超过10B的模型上,效果追上了fine-tune,但是p tuning v2因为每层插入了token,增大模型训练的改变量,更加适用于小一点的模型。 chatglm使用p tuning v2微调代码: 三、Lora Lora主要在模型中注入可训练模块,大模型在预训练完收敛之后模型包含许多进行矩阵乘法的稠密...
在模型微调时,W0被冻结,不接受梯度更新,只微调参数A和B。与所有参数参与模型微调相比,此时该步骤模型微调的参数量由d×k变成d×r+r×k,而r≪min(d,k),因此微调参数量大量减少了。 如下图所示,LoRA 微调时,对A使用随机高斯初始化,对B使用零初始化,因此ΔW=BA在训练开始时为零。 对Transformer 的每一层...
在模型微调时,W0被冻结,不接受梯度更新,只微调参数A和B。与所有参数参与模型微调相比,此时该步骤模型微调的参数量由d×k变成d×r+r×k,而r≪min(d,k),因此微调参数量大量减少了。 如下图所示,LoRA 微调时,对A使用随机高斯初始化,对B使用零初始化,因此ΔW=BA在训练开始时为零。 对Transformer 的每...
基于chatGLM-6B模型微调详细教程(Linux版)(ptuning & lora)在人工智能领域,模型微调是一种重要的优化技术,可以进一步提高模型的性能和准确性。最近,基于Transformer的聊天生成模型(ChatGLM)备受关注,其中包括6B模型。本文将重点介绍在Linux环境下,如何对chatGLM-6B模型进行微调,同时涉及ptuning和lora这两个关键概念。一...
Prompt Tuning P-Tuning v1 P-Tuning v2 LoRA QLoRA 冻结方法 Freeze 方法意思是,只用少部分参数训练,把模型的大部分参数冻结。 只要设置微调层的参数: # 遍历模型的所有参数和名称 for name, param in model.named_parameters(): # 指定冻结层,(layers.27, layers.26, layers.25, layers.24, layers.23)...
本文将对大模型微调的几种方法进行介绍和比较,包括LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning。这些方法都可以有效地优化模型性能,提高模型在特定任务上的准确率。 LoRALoRA是一种轻量级的微调方法,通过在预训练模型中引入可学习的低秩矩阵来调整模型参数。这种方法可以在保持模型性能的同时降低计算成本。LoRA...
LoRA P-tuning v2 Freeze 2. LoRA 微调方法 2.1 LoRA 微调方法的基本概念 LoRA(Low-Rank Adaptation of Large Language Models),直译为大语言模型的低阶自适应。LoRA 的基本原理是冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。由于这些新增参...
简单粗暴!1小时理解大模型预训练和微调!了解四大LLM微调方法,大模型所需NLP基础知识,基于人类反馈的强化学习、P-Tuning微调、Lora-QLora共计4条视频,包括:1-1节 大模型项目引入、1-2节 从预训练到微调、大模型学习路线等,UP主更多精彩视频,请关注UP账号。
LoRA可以应用于各种自然语言处理任务,包括文本生成、机器翻译、情感分析等。它有助于模型更好地适应不同领域或特定领域的数据。 第三部分:P-tuning v2 微调方法 简介 P-tuning是一种适用于多语言和跨语言任务的微调方法,它的目标是使模型能够在不同语言之间进行迁移学习。P-tuning v2是其改进版本,增强了模型的通用...