ORB-SLAM提出一种自动初始化流程,能够根据场景自动的选择模型(Homography or Fundamental),当初始化质量不好的时候则延迟初始化。 本文对初始化过程中的诸多细节进行了总结。 本文属于个人记录,比较乱。1. 初…
接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识,告诉你平时学到的各个小知识应用在SLAM系统中的什么位置,达到快速高效学习的效果。
TrackMonocular是ORBSLAM单目视觉SLAM的追踪器接口,因此从这里入手。其中GrabImageMonocular下⾯有2个主要的函数:Frame::Frame()和Tracking::Track()。我会按照下⾯的框架流程来分解单⽬初始化过程,以便对整个流程有⽐较清晰的认识。1.Frame::Frame()1)作用 主要完成工作是特征点提取,涉及到的知识点其实很多...
然而,与 ORB-SLAM3 相比,Stereo-NEC平均初始化时间长了 300.15 毫秒。这是由于Stereo-NEC中有两个额外步骤:1)在估计关键帧速度、重力方向和加速度偏置之前,首先估计初始陀螺仪偏置,而 ORBSLAM3 的惯性步骤同时估计速度、重力方向和 IMU 偏置。2)在获得陀螺仪偏置后,通过积分陀螺仪测量值去除陀螺仪偏置来优化相机...
本文承接ORB-SLAM3 细读单目初始化过程(上),ORBSLAM3单目视觉有很多知识点需要展开和深入,初始化过程是必然要经历的,而网上资料不够系统,因此本文主旨是从代码实现出发,把初始化过程系统化,建立起知识树,以把零碎的知识点串联起来,方便快速学习提升自己。注意,本文虽然从代码出发,但并非讲全部代码细节,如有需要建议...
ORB-SLAM3中IMU初始化由LocalMapping线程中的InitializeIMU函数完成。 主要是完成重力方向RwgRwg和尺度scale的估算,总共进行三次。 InitializeIMU函数包含两部分:InertialOptimization 和 FullInertialBA InertialOptimization函数 纯IMU的优化,固定关键帧位姿,优化重力方向、尺度、关键帧速度和偏置 ...
单目SLAM地图初始化的目标是构建初始的三维点云。由于不能仅仅从单帧得到深度信息,因此需要从图像序列中选取两帧以上的图像,估计摄像机姿态并重建出初始的三维点云。 ORB-SLAM中提到,地图初始化常见的方法有三种。 方法一 追踪一个已知物体。单帧图像的每一个点都对应于空间的一条射线。通过不同角度不同位置扫描同...
因为单目初始化的两帧是连续的,且初始化的两帧的速度一般不快,两帧差距不大,因此这里的候选关键帧采用最简单的紧邻搜索。如图所示: 假设特征点在Frame1中的位置为A(x,y)。那么Frame2中的候选特征点就在对应坐标的一个半径为r(默认r=100)的圆中查找...
主讲嘉宾:单鹏辉@单鹏辉 国内知名研究院就职,多年机器人从业经验,主要研究方向为SLAM和机器人定 位算法。课程大纲:1、对角直方图2、対极约束3、八点法4、归一化5、计算位姿6、卡方检验7、三角测量8、总结, 视频播放量 2369、弹幕量 0、点赞数 23、投硬币枚数 11、收藏人
当系统中有IMU,视觉初始化成功mState==OK且跟踪失败bOK==false LOST(跟踪失败) 跟踪线程track() 判断mState==NO_IMAGES_YET 是 执行mState=NO_INITIALIZED 判断mState==NO_INITIALIZED 是 此时情况为:1.还未获得初始帧 2.已经获得初始帧,但还未初始化成功 ...