ORB-SLAM是由Raul Mur-Artal、J. M. M. Montiel和Juan D. Tardos于2015年发表在IEEE Transactions on Robotics上。该算法融合了PTAM算法的主要思想以及Strasdat提出的闭环修正方法并采用ORB特征点进行跟踪、构图、重定位、闭环修正以及初始化,并且算法的环境适应力强,对剧烈运动也很鲁棒。正因为ORB-SLAM是基于特征点...
从图5可以看出,传统ORB算法输出的特征点提取效果分布情况较为密集,改进ORB算法的特征点提取效果分布情况较为均匀。为了量化传统ORB算法与改进ORB算法图像特征点分布的均匀情况,引入文中提出的图像特征点分布均匀性评价方法计算特征点在图像中的分布情况,如表1所示。 从表1中可以看出,当特征点期望数值相同时,改进ORB算法...
针对单目视觉同步定位与地图构建问题对传统定向二进制描述符算法进行改进,结合快速鲁棒特征算法的思想,将尺度空间理论引入传统ORB算法中,同时根据机器人的运动先验信息,预测特征点的可能范围,避免在全局范围内对特征点的检测和匹配。实验表明,改进的ORB算法能显著提高匹配正确率,在多尺度方面表现出色,并能有效减少运算时间...