Atlas的方法使得在跟踪丢失时能够重新创建一个地图,并在回到原有位置时利用原地图的信息,使得SLAM更加鲁棒。Atlas的方法也用在了ORB-SLAM3中 四、ORB-SLAM3 ORB-SLAM3中的地图,大致上采用了ORB-SLAM1/2和ORB-Atlas的方法完成了重定位、回环和地图融合。 1. 重定位 ORB-SLAM3在重定位的策略上做了一些改进。为...
接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识,告诉你平时学到的各个小知识应用在SLAM系统中的什么位置,达到快速高效学习的效果。
因此,我们首先使用我们的ORB-SLAM2的拓展版本在汽车低速行驶的情况下构建并保存具有环境视觉特征的地图。在第二次运行时,我们重新加载地图,然后在之前构建的地图上定位。对构建好的地图进行加载和定位可以提高自动驾驶车辆的连续定位精度。此地图的保存功能是原始的ORB-SLAM 2所缺少的。 我们使用KITTI数据集的场景...
ORB-SLAM(二)性能 ORB-SLAM(四)追踪 ORB-SLAM(五)优化 ORB-SLAM(六)回环检测
本项目以ORB-SLAM3的双目模式为基础,首先构建ORB特征地图并获得运动轨迹。然后基于目前主流的深度学习特征如SuperPoint、D2-Net等离线构建深度学习特征视觉地图。最后,实现在OBR-SLAM3系统中的定位模式修改,在关键帧中添加深度学习特征约束,实现长期视觉定位。效果如下 ...
ORB-SLAM2 地图保存 一、简介 在ORB-SLAM2的System.h文件中,有这样一句话:// TODO: Save/Load functions,让读者自己实现地图的保存与加载功能。其实在应用过程中很多场合同样需要先保存当前场景的地图,然后下次启动时直接进行跟踪,这样避免了初始化和建图,减小相机跟踪过程中计算机负载,还有就是进行全场的定位。
octomap地图: ORB-SLAM2地图切换 语义pcl点云图 2d 融合3d效果图 方案1: 方案2: 动态点检测 方案1: 方案2: 数据库: 系统整体框架: 相机定位轨迹对比, tum ft3 walking数据集上 flow: compared_pose_pairs 826 pairs absolute_translational_error.rmse 0.387510 m ...
本系统有一个单独的场景重识别的模块,如果两个关键帧都来自active map就会执行闭环检测,如果在不同的地图中就会执行地图融合。新地图产生的标准 当相机跟踪失败就开始进行重定位,如果重定位过了一段时间也不成功,active map变成了unactive map存储在了altas中。然后一个新地图被初始化,具体的过程参考ORB-SLAM2和...
3版本的rgbd稠密地图可回环来了 https://github.com/electech6/ORB_SLAM3_detailed_comments/tree/dense_map 后面会持续更新,会增加双目稠密地图与多地图系统,只能工作之余写代码,可能还有点糙,但是比2的代码写的会好一些 以下为2的版本 ——— 高博曾经在他的github上提供过,但因为大佬时间少,并没有将回环...
接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识,告诉你平时学到的各个小知识应用在SLAM系统中的什么位置,达到快速高效学习的效果...