首先回顾一下历史:ORB-SLAM首次在2015年被提出,它的改进版ORB-SLAM2在2017年被提出,同年提出了ORB-SLAM-VI,时隔3年,ORB-SLAM3横空出世,朋友圈、学术群里到处都在热议这个挂在Arxiv才不到3天的论文。好奇心的驱使下,本人偷瞄了一下论文,就在这里总结一下吧。 开始之前,先放两条ORB-SLAM3的展示视频撑撑场面。
ORB-SLAM最早的版本在2014年的RSS上发布,在2016年作者又发布了ORB-SLAM2,接着在去年(2020年)发布了ORB-SLAM 3。ORB-SLAM1只能针对单目相机数据进行处理;ORB-SLAM 2 增加了对于双目和RGB-D相机的处理,在回环检测模块增加了Full Global BA的处理;ORB-SLAM 3则增加了对于IMU融合的支持,兼容鱼眼相机模型,并且增加...
ORB-SLAM3是在ORB-SLAM2的基础上开发的视觉惯性SLAM技术,于2020年7月 发布。它在定位精度和效果上几乎碾压了同类的开源算法,受到极大关注。 它有如下特点: 1、 第一个可以运行视觉、视觉惯性和多地图,支持单目、双目和RGB-D相机,且支持针孔和鱼眼镜头模型的SLAM系统。 2、该算法可以在不同大小,室内和室外环境中...
与只使用最后几秒信息的视觉里程计系统相比,ORB_SLAM3是第一个能够在所有算法阶段重用所有先验信息的系统.这允许包含BA调整共视关键帧,这些关键帧提供了高视差观测,提高了精度. 我们的实验表明,在所有的传感器配置中,ORB_SLAM3与文献中可用的最佳系统一样鲁棒,并且更精...
2020年夏,ORB-SLAM3被提出,在原有基础上增加了视惯融合SLAM支持、改进的场景识别技术、多地 图Atlas机制以及相机模型抽象化等新特性,通过多达四种层次的数据关联重用历史信息,有效提升了定 位精度和鲁棒性;在EuRoC和TUM VI数据集上的实验展示了超越VINS系列、VI-DSO、MSCKF、ROVIO 等经典工作的精度,这都表明ORB-SL...
(https://github.com/tiantiandabaojian/ORB-SLAM2_RGBD_DENSE_MAP),在高翔基础上添加了稠密闭环地图 [ORB-YGZ-SLAM] (https://github.com/gaoxiang12/ORB-YGZ-SLAM), 使用SVO中直接法来跟踪代替耗时的特征点提取匹配,在保持同样精度的情况下,是原始ORB-SLAM2速度的3倍 ...
ORB-SLAM-VI:首次提出了一种视觉惯性SLAM系统,该系统能够重用具有短期、中期和长期数据关联的地图,并在基于IMU预集成的精确局部视觉惯性BA中使用它们。然而,它的IMU初始化技术太慢,耗时15秒,这损害了鲁棒性和准确性。 IMU快速初始化方法:下面文章中提出了更快的初始化技术,基于闭合形式的解决方案,以联合检索尺度、...
学SLAM 的同学,应该没有不知道 ORB-SLAM的,截止2020年7月24日,ORB-SLAM系列的谷歌引用量已达到4770 = 3053+1717!实属相当恐怖的数据 值得说一下,ORB-SLAM和ORB-SLAM2的一作都是Raúl Mur-Artal,但这位大佬应该已经毕业了,所以ORB-SLAM3由其同校应该也是同实验室的Carlos Campos完成。单看论文作者列表,猜测他...
坂田克里斯,四月小小酱,刘国庆等用户也对OBR-SLAM的代码进行了分析,其中刘国庆指出:目前ORB-SLAM3的代码可能是团队匆忙整理出来,对于高版本的库和编译器支持尚待完善。 ORB-SLAM3解读分析ORB-SLAM3的研究历史 2015年,研究通过多线程实现的基于特征点的实时单目SLAM系统,发表论文与源码ORB-SLAM。