首先回顾一下历史:ORB-SLAM首次在2015年被提出,它的改进版ORB-SLAM2在2017年被提出,同年提出了ORB-SLAM-VI,时隔3年,ORB-SLAM3横空出世,朋友圈、学术群里到处都在热议这个挂在Arxiv才不到3天的论文。好奇心的驱使下,本人偷瞄了一下论文,就在这里总结一下吧。 开始之前,先放两条ORB-SLAM3的展示视频撑撑场面。
ORB-SLAM3并不能利用改进的VPR性能。需要将其完全集成到整个系统中,这将涉及大量的实现工作和算法更改。
02 ORB-SLAM3系统概述 Atlas 跟踪线程 局部建图线程 回环和地图合并线程 03 视觉-惯导SLAM 基本原理 IMU 初始化 跟踪和建图 跟踪丢失的鲁棒性 04 地图合并和回环检测 位置识别 视觉地图合并 视觉-惯导地图合并 回环检测 本文是ORB-SLAM3深度系列的第二篇内容,我们将聚焦ORB-SLAM3的整体算法代码流程梳理及论文...
使得SLAM位姿求解过程和相机成像模型解耦,理论上支持绝大多数成像模型的相机;通过对于IMU的支持,ORB-SLAM系列加入了VI-SLAM的大家庭,也表明多传感器融合的SLAM是目前一大发展趋势;多地图的机制有利于跟丢后保留尽可能多的信息用于后续补救,也为后续实现多机器协同的SLAM提供了工作基础。
ORB-SLAM中的实现提高了特征分布的均匀性。 最简单的一种方法是把图像划分成若干小格子,每个小格子里面保留质量最好的n个特征点。这种方法看似不错,实际上会有一些问题。当有些格子里面能够提取的数量不足n个的时候(无纹理区域),整幅图上提取的特征总量就达不到我们想要的数量。严重的情况下,SLAM就会跟丢喽 ...
相比于只使用最后几秒钟信息的视觉里程计系统,ORB-SLAM3系统是第一个能够在所有算法阶段重用所有先验信息的系统。这允许包括在BA优化共同可见关键帧,提供高视差观测并且提高精度。 通过实验表明,在所有传感器配置中,ORB-SLAM3与文献中可用的最佳系统鲁棒性一致,而且更加精确。值得注意的是,本文的立体惯性SLAM在EuRoC无...
2 改进ORB算法 在RGB-D SLAM算法中,前端数据处理部分使用传统ORB算法对图像进行特征点检测与提取,会导致提取到的特征点分布不均匀,并且还会在图像中的某一区域出现特征点重叠的情况。特征点分布不均匀以及重叠特征点的出现会影响移动机器人运动状态的估计。针对上述问题,本文提出了一种改进ORB算法,改进ORB算法的流程如...
在单目和双目配置中,本文系统比ORB-SLAM2更精确,因为它具有更好的位置识别算法,这能够更早地回环并且...
不同的是,ORB-SLAM在FAST特征点的基础上又提取了ORB描述子,这种描述子在不同观测视角和不同光照条件下有鲁棒的不变性,并且计算速度比SIFT、SURF要快很多。描述子的用途是配合DBoW[2]做特征点匹配和回环检测。具体的说,每个描述子会对应词典里一个单词,词典中的单词以树状结构存储,每个单词对应一个叶节点。这个...
大家觉得VINS和ORB-SLAM精度高,那是它们在几个公开数据集上表现好。但这并不意味着它们在工程应用中也一定表现好。实际上,应用中对精度影响更大的反而是数据质量,而不是算法本身。比如传感器的标定误差、同步精度、曝光、对比度、噪点等都可能会产生显著影响。在这种情况下,算法本身的差异甚至可以忽略不计。即便你出...