接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识,告诉你平时学到的各个小知识应用在SLAM系统中的什么位置,达到快速高效学习的效果。
接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识,告诉你平时学到的各个小知识应用在SLAM系统中的什么位置,达到快速高效学习的效果。
接下来,就是完成初始化过程的最后一步:地图的初始化,是由CreateInitialMapMonocular函数完成的,本文基于该函数的流程出发,目的是为了结合代码流程,把单目初始化的上下两篇的知识点和ORB-SLAM3整个系统的知识点串联起来,系统化零碎的知识,告诉你平时学到的各个小知识应用在SLAM系统中的什么位置,达到快速高效学习的效果。
我们用这四个解三角化地图点,并且如单应性矩阵的做法一样来从中选择正确的重构。 5)捆集调整: 最后,我们运行全局BA(细节见附录)来优化初始重构。 一个在室外NewCollege机器人序列中有挑战性初始化的例子如下图所示。从图中可以看到PTAM和LSD-SLAM是如何在平面内初始化所有的点,然而我们的方法则等到存在足够视差...
3) 说了ORB-SLAM为什么要同时计算基础矩阵F和单应矩阵H的原因:这两种摄像头位姿重构方法在低视差下都没有很好的约束,所以提出了一个新的基于模型选择的自动初始化方法,对平面场景算法选择单应性矩阵,而对于非平面场景,算法选择基础矩阵。 4)说了ORB-SLAM初始化容易失败的原因:(条件比较苛刻)在平面的情况下,为了...
ORB-SLAM3中IMU初始化由LocalMapping线程中的InitializeIMU函数完成。 主要是完成重力方向RwgRwg和尺度scale的估算,总共进行三次。 InitializeIMU函数包含两部分:InertialOptimization 和 FullInertialBAInertialOptimization函数纯IMU的优化,固定关键帧位姿,优化重力方向、尺度、关键帧速度和偏置...
总结而言,ORB-SLAM3的单目初始化过程是整个系统中非常关键的一步,它将初始关键帧和描述子转化为BoW,生成地图并进行优化,最终得到准确的地图。整个过程中涉及的知识点包括图优化、共视图、地图点和关键帧的定义以及各种优化算法的应用。理解并掌握这些知识点对于深入学习SLAM系统非常有帮助。参考文献包括...
ORBSLAM3中,作者调用MapPoint::PredictScale函数,根据地图点到光心的距离,来预测一个类似特征金字塔的尺度。 因为在进行投影匹配的时候会给定特征点的搜索范围,由于考虑到处于不同尺度(也就是距离相机远近,位于图像金字塔中不同图层)的特征点受到相机旋转的影响不同,因此会希望距离相机近的点的搜索范围更大一点,距离相...
ORB-SLAM 它是由三大块、三个流程同时运行的。第一块是跟踪,第二块是建图,第三块是闭环检测。 跟踪(Tracking) 这一部分主要工作是从图像中提取 ORB 特征,根据上一帧进行姿态估计,或者进行通过全局重定位初始化位姿,然后跟踪已经重建的局部地图,优化位姿,再根据一些规则确定新关键帧。