SGD对所有参数更新时应用同样的 learning rate,如果我们的数据是稀疏的,我们更希望对出现频率低的特征进行大一点的更新。LR会随着更新的次数逐渐变小。 5.Adam:Adaptive Moment Estimation 这个算法是另一种计算每个参数的自适应学习率的方法。相当于 RMSprop + Momentum 除了像 Adadelta 和 RMSprop 一样存储了过去梯度...
1.SGD 2.BGD 3.MBGD 4.Momentum 5.NAG 6.AdaGard 7.RMSprop 8.AdaDelta 9.Adam 三、参考 一、简介 优化器(Optimizer)是深度学习中的一个核心概念,它主要用于更新神经网络的权重,以最小化或减少损失函数的值,提高模型的效果。 二、优化器 1.SGD SGD:Stochastic Gradient Descent 随机梯度下降。每次使用一条...
Adam是实际学习中最常用的算法 优化方法在实际中的直观体验 损失曲面的轮廓和不同优化算法的时间演化。 注意基于动量的方法的“过冲”行为,这使得优化看起来像一个滚下山的球 优化环境中鞍点的可视化,其中沿不同维度的曲率具有不同的符号(一维向上弯曲,另一维向下)。 请注意,SGD很难打破对称性并陷入困境。 相反...
1 SGD 和 BGD 和 Mini-BGD SGD 随机梯度下降,算法在每读入一个数据都会立刻计算loss function的梯度来update参数。假设loss function为w 所以SGD的batchsize为1 收敛的速度快,但是不容易跳出局部最优解 BGD(batch gradient descent):批量梯度下降,算法在读取整个数据集后才去计算损失函数的梯度 batchsize 为n 数据...
SGD 因为更新比较频繁,会造成 cost function 有严重的震荡。 BGD 可以收敛到局部极小值,当然 SGD 的震荡可能会跳到更好的局部极小值处。 当我们稍微减小 learning rate,SGD 和 BGD 的收敛性是一样的。 3.Mini-Batch Gradient Descent (MBGD) 梯度更新规则: ...
Adam 就是在 RMSprop 的基础上加了 bias-correction 和 momentum, 随着梯度变的稀疏,Adam 比 RMSprop 效果会好。 整体来讲,Adam 是最好的选择。 很多论文里都会用 SGD,没有 momentum 等。SGD 虽然能达到极小值,但是比其它算法用的时间长,而且可能会被困在鞍点。 如果需要更快的收敛,或者是训练更深更复杂的神...
BGD 可以收敛到局部极小值,当然 SGD 的震荡可能会跳到更好的局部极小值处。 当我们稍微减小 learning rate,SGD 和 BGD 的收敛性是一样的。 3.Mini-Batch Gradient Descent (MBGD) 梯度更新规则: MBGD 每一次利用一小批样本,即 n 个样本进行计算,这样它可以降低参数更新时的方差,收敛更稳定,另一方面可以充分...
本文仅对一些常见的优化方法进行直观介绍和简单的比较,主要是一阶的梯度法,包括SGD, Momentum, Nesterov Momentum, AdaGrad, RMSProp, Adam。 其中SGD,Momentum,Nesterov Momentum是手动指定学习速率的,而后面的AdaGrad, RMSProp, Adam,就能够自动调节学习速率。
Adam是实际学习中最常用的算法 优化方法在实际中的直观体验 损失曲面的轮廓和不同优化算法的时间演化。 注意基于动量的方法的“过冲”行为,这使得优化看起来像一个滚下山的球 优化环境中鞍点的可视化,其中沿不同维度的曲率具有不同的符号(一维向上弯曲,另一维向下)。 请注意,SGD很难打破对称性并陷入困境。 相反,...