说明书 生活娱乐 搜试试 续费VIP 立即续费VIP 会员中心 VIP福利社 VIP免费专区 VIP专属特权 客户端 登录 百度文库 期刊文献 学位optimal brain damage 翻译optimal brain damage翻译为:最佳脑损伤。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
Optimal Brain Surgen的公式推导: Background:泰勒展开的公式: ∑n=0∞f(n)(a)n!(x−a)n Loss的公式在已经converge的weight处进行的泰勒展开的公式如下: ΔE=(∂E∂W)T⋅ΔW+12ΔWT⋅H⋅ΔW+O(‖ΔW‖3) 第一项是L⋅△W,也就是一阶导乘以weight的变化,如果是局部最优,可以认为这一...
这篇论文是神经网络剪枝的远古工作,主要是提出了一种衡量权重参数重要性的指标,并且针对涉及的二阶导数计算提出了一个近似方法,以减少计算复杂性。 本文将权重的显著性定义为删除该参数引起的目标函数的变化,…
optimal brain damage 翻译 The translation of "optimal brain damage" is "最优脑损伤" (zuì yōu nǎo sǔn shāng) in Chinese. "Optimal brain damage" refers to a technique used in neural network pruning, where unnecessary connections or parameters in a neural network are identified and ...
Optimal Brain Damage,可顾名思义,最优大脑损坏,大脑神经元如果要选择损坏一部分权重,应该去掉哪些?就是经典的神经元剪枝问题。剪枝可提升神经网络泛化能力。 统计机器学习做权重剪枝一般是比较明确的,如多项式中把高次项先删除,NN中要用什么顺序剪枝其实并不明显。如果按照数值大小,先去值小的权重(small-magnitude ...
Optimal Brain Damage Yann Le Cun, John S. Denker and Sara A. Solla AT&T Bell Laboratories, Holmdel, N. J. 07733 Most successful applications of neural network learning to real-world problems have been achieved using highly structured networks of rather large size for example (Waibel, 1989; ...
optimal brain damage 星级: 8 页 brain tissue damage 星级: 7 页 Quality of Life with Brain Damage 星级: 3 页 Does stress damage the brain 星级: 9 页 Magnesium and fetal brain damage 星级: 2 页 A case of generalized hypoxic brain damage following traumatic brain damage 星级: 5 ...
OptimalBrainDamage YannLeCun,JohnS.DenkerandSaraA.Solla presentedby ChaitanyaPolumetla Overview • Introduction • NeedforOBD • TheIdea • AuthorsProposal • WhyOBDcouldwork? • Experiments • Results • Conclusion • Drawbacks
Winther, "A Quan- titative Study of Pruning by Optimal Brain Damage," Intern ational Journ al of Neural Systems, 4(2) (June, 1993) 159-1 69.A quantitative study of pruning by optimal brain damage - Krogh - 1993J. Gorodkin, L.K. Hansen, A. Krogh, C. Svarer, and 0. Winter: ...
Optimal Brain Damage 来自 AMS 喜欢 1 阅读量: 1662 作者: Y Lecun 摘要: We have used information-theoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be ...