llm = LLM(model="facebook/opt-125m") # Generate texts from the prompts. outputs = llm.generate(prompts) To use torch.compile, we need to add self.model = torch.compile(self.model) in this line: https://github.co
crash log like RuntimeError: weight decoder.embed_tokens.weight does not exist rank=0 opt-125m has prefix "model" while opt-6.7b does not have prefix
For more info: https://github.blog/changelog/2024-03-07-github-actions-all-actions-will-run-on-node20-instead-of-node16-by-default/ Show more
vLLM推理入门实战-Qwen1.5-0.5B-Chat和opt-125M 本文基于官方文档,简要介绍使用vLLM在opt-125m和Qwen1.5-0.5B-Chat的调包式推理,以及Server服务调用和多Lora推理使用。 一、vLLM环境安装 环境配置 安装vLLM的环境配置 基于pip安装vLLM # (Recommended) Create a new conda environment. conda create -n myenv ...
(input_ids,return_dict=True,use_cache=True,past_key_values=past_key_values)past_key_values=outputs.past_key_valuesprint("Finished, all OK")tokenizer=AutoTokenizer.from_pretrained("facebook/opt-125m")model=TFOPTForCausalLM.from_pretrained("facebook/opt-125m")decoding_example(model,tokenizer)#...
经过实验发现,不管是使用huggingface还是使用FlagAI加载OPT125m模型,在解码的时候总会出现一些乱码的情况,如图: 目前相关的问题已经提交issue到transformers的仓库中: https://github.com/huggingface/transformers/issues/17735 其他参数量大小的模型目前没...
The official opt-125m model has max_position_embeddings=2048, so when I train vary-tiny with follow command: deepspeed --master_port $MASTER_PORT vary/train/train_opt.py \ --deepspeed ./zero_config/zero3.json \ --model_name_or_path faceb...
GitHub Copilot Enterprise-grade AI features Premium Support Enterprise-grade 24/7 support Pricing Search or jump to... Search code, repositories, users, issues, pull requests... Provide feedback We read every piece of feedback, and take your input very seriously. Include my email address...
GitHubHugging Face在线体验 模型参数(Parameters) 1750.0 最高上下文长度(Context Length) 2K 是否支持中文 不支持 推理能力(Reasoning) 模型基本信息 是否支持推理过程 不支持 最高上下文输入长度 2K tokens 最长输出结果 暂无数据 模型类型 基础大模型 发布时间 ...
Given a formula in CNF consists of clause c 1 , c 2 , ⋯ , c m , we formulate the partial MaxSAT problem as a penalized binary programming problem: max ∑ c i ∈ C 1 ∪ C 2 w i max { c 1 i x 1 , c 2 i x 2 , ⋯ , c n i x n , 0 } , s.t. x ∈ { ...