代码演示 我们再新建一个项目名为opencv--sift,按照配置属性(VS2017配置OpenCV通用属性),然后在源文件写入#include和main方法 记得我们要加上opencv2\xfeatures2d.hpp 使用SIFT检测,其实红框里面是我们定义的参数,可以修改一下参数进行变化 运行效果 上面左边红框处就是我们获取了多少个KeyPoints并打印出来,可以看到这...
1.1 传统的特征提取方法 成像匹配的核心问题是:将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相对应。传统的匹配算法往往是直接提取角点或者边缘,对环境中的适应能力较差,急需提出一种棒性强、能够适应不同光照、不同位姿等情况下的有效识别目标的方法。 1.2 SIFT算法提出的意义 1999年,Brit...
使用SIFT 提取特征:接下来,我们将使用 SIFT 从输入图像中提取特征。 OpenCV 提供了一个cv2.xfeatures2d.SIFT_create()函数来创建我们可以用于特征提取的 SIFT 对象。我们可以指定各种参数,例如要检测的关键点数、倍频程数和对比度阈值。 这是一个例子: importcv2...
Sift算法的优点是特征稳定,对旋转、尺度变换、亮度保持不变性,对视角变换、噪声也有一定程度的稳定性;缺点是实时性不高,并且对于边缘光滑目标的特征点提取能力较弱。 函数参数 OpenCV 4.4.0 以下版本,static Ptr<SIFT> cv::xfeatures2d::SIFT::create static Ptr<SIFT> intnfeatures= 0, 要...
SIFT特征和SURF特征比较 SIFT特征基本介绍 SIFT(Scale-Invariant Feature Transform)特征检测关键特征: 建立尺度空间,寻找极值 关键点定位(寻找关键点准确位置与删除弱边缘) 关键点方向指定 关键点描述子 建立尺度空间,寻找极值 工作原理 构建图像高斯金字塔,求取DOG,发现最大与最小值在每一级 ...
一、常用图像特征描述 SIFT、SURF、HOG、Haar、LBP、KAZE、AKAZE、BRISK 关于详情查看 OpenCV—python 角点特征检测之二(SIFT、SURF、ORB) SIFT 是用于描述图像中的局部特征,在空间尺度(使用高斯卷积核实现多尺度空间)中寻找极值点(LoG近似DoG找到关键点),并且提取出其位置、尺度、旋转不变量,因此具有...
opencv中sift特征提取的步骤 使用SiftFeatureDetector的detect方法检测特征存入一个向量里,并使用drawKeypoints在图中标识出来 SiftDescriptorExtractor 的compute方法提取特征描述符,特征描述符是一个矩阵 使用匹配器matcher对描述符进行匹配,匹配结果保存由DMatch的组成的向量里 ...
使用Opencv2.4.9进行SIFT特征点提取和匹配 主要使用的类:FeatureDetector FeatureExtractor FeatureMatcher1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45...
opencv中sift特征提取的步骤 使用SiftFeatureDetector 的detect方法检测特征存入一个向量里,并使用drawKeypoints在图中标识出来 SiftDescriptorExtractor 的compute方法提取特征描述符,特征描述符是一个矩阵 使用匹配器matcher对描述符进行匹配,匹配结果保存由DMatch的组成的向量里 ...