//为了排除因为图像遮挡和环境混乱而产生误匹配的关键点,sift的作者提出了比较最邻近距离的sift匹配:取一幅图像中的一个sift关键点,并找出其与另一幅图像中欧式距离最近 //的前两个关键点,在这两个关键点中,如果最近的距离除以次近距离得到的ratio少于阈值T,则接受这一对匹配点。降低T匹配点数会减少,更准确,反...
2.2 检测特征点 接下来,我们使用SIFT算法检测图像中的特征点。使用cv2.xfeatures2d.SIFT_create()创建SIFT对象,并调用detect()方法检测特征点。 sift=cv2.xfeatures2d.SIFT_create()# 检测特征点kp1,des1=sift.detectAndCompute(img1,None)kp2,des2=sift.detectAndCompute(img2,None) 1. 2. 3. 4. 5. 2.3...
特征点匹配是计算机视觉领域中非常关键和基础的技术之一。本文将介绍Python和OpenCV中常用的特征点匹配算法。 一、SIFT算法 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)是一种用于提取图像局部特征的算法。它能够在不同尺度和旋转角度上找到关键点,并且对图像的缩放、旋转保持不变性。SIFT算法主要分为四个...
print('queryIdx:',match[2].queryIdx)#第一幅图的匹配的第三个特征点的索引 print('zuobiao1:',kp1[match[2].queryIdx].pt)##第一幅图的匹配的第三个特征点的坐标 print('trainIdx:',match[2].trainIdx)#第二幅图的匹配的第三个特征点的索引 print('zuobiao2:',kp2[match[2].trainIdx].pt)##第二...
本文主要简单描述如何用 Python 和 OpenCV 库实现两张图片的自动拼合。 3 研究内容 3.1 SIFT SIFT特征是基于一些与图像大小和旋转无关的局部外观点。对光、噪声和微角度变化的容忍度也相当高。由于这些性质,它们非常有意义,并且相对容易访问。在大型父特征数据库中,对象易于识别,误解较少。采用SIFT对象描述的部分...
SIFT特征提取和匹配的步骤,如下: 1 )生成高斯差分金字塔(DOG金字塔),尺度空间构建。 尺度空间的获取通常使用高斯模糊来实现,不同Sigma的高斯函数决定了对图像的模糊程度,越大的值图像越模糊。 每一组在层数上,DOG金字塔比高斯金字塔少一层。后续Sift特征点的提取都是在DOG金字塔上进行的。
在本文中,我们将探讨如何将 SIFT 与流行的开源计算机视觉库 OpenCV 一起用于图像特征提取和匹配。 输入图像:让我们首先加载要在其上执行特征提取和匹配的输入图像。我们可以使用 OpenCV 的内置函数来读取和显示图像。 下面是如何在 Python 中执行此操作的示例: ...
近期一直研究图像的拼接问题。图像拼接前,找到各个图像的特征点是个非常关键的步骤。这期专栏,我将介绍两种较常用的特征匹配方法(基于OpenCV),Brute-Force匹配和FLANN匹配。 1、BF匹配 cv2.BFMatch(normType,crossCheck=True/False) 其中normType是用来指定要使用的距离测试类型。默认值为cv2.Norm_L2,适用于SIFT,SURF...
在使用OpenCV进行SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)特征点匹配时,我们需要遵循一系列步骤来确保匹配过程的准确性和效率。以下是根据你的提示,详细阐述如何使用OpenCV进行SIFT特征点匹配的过程,并附上相应的代码片段。 1. 加载并预处理图像 首先,我们需要加载要进行特征点匹配的图像,并对它们进行...