10,0.1);//kmeans的终止的条件kmeans(points, clusterCount, labels, criteria,3, cv::KMEANS_PP_CENTERS, centers);//运行kmeans//显示图像分割结果cv::Mat result =cv::Mat::zeros(src.size(),src.type());for(introw =0; row < height;row++) {for(intcol =0; col < width;col++)...
参数2:K 指定聚类时划分为几类 参数3:为cv::Mat类型,是一个长度为(样本数,1)的矩阵,即mat.cols=1,mat.rows=样本数;为K-Means算法的结果输出,指定每一个样本聚类到哪一个label中【指定每一个样本聚类到哪一类中】 参数4:TermCriteria类,算法进行迭代时终止的条件,可以指定最大迭代次数,也可以指定预期的精度...
kmeans是非常经典的聚类算法,至今也还保留着较强的生命力,图像处理中经常用到kmeans算法或者其改进算法进行图像分割操作,在数据挖掘中kmeans经常用来做数据预处理。opencv中提供了完整的kmeans算法,其函数原型为: double kmeans( InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int atte...
上面图像,会发现五种主要颜色(分别是天空、草地、树、人的上身白,人的下身黑) 因此,我们将为这张图片使用K=5: k = 5 _, labels, (centers) = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) 1 2 cv2.KMEANS_RANDOM_CENTERS只是指示OpenCV最初随机分配集群的值。 我们...
Kmeans图像分割 ✔️ 在一张图片中,每一个像素点对应位置坐标和色彩坐标,用k-means算法对图像聚类不是聚类位置信息,而是对其色彩进行聚类。 ✔️ kmeans能够实现简单的分割,当然效果不是非常好,需要经过一些后处理调整,才能得到高精度的分割图。
C++ OpenCV图像分割之KMeans方法 前言 kmeans算法主要用来实现自动聚类,是一种非监督的机器学习算法,使用非常广泛。在opencv3.0中提供了这样一个函数,直接调用就能实现自动聚类,非常方便。 API介绍 double kmeans(InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int attempts, int flags,...
K-Means 聚类是一种无监督机器学习算法,旨在将N 个观测值划分为K 个聚类,其中每个观测值都属于具有最近均值的聚类。集群是指由于某些相似性而聚合在一起的数据点的集合。对于图像分割,这里的簇是不同的图像颜色。 我们使用的环境是pip install opencv-python numpy matplotlib ...
OpenCV的k - means聚类 目标 学习使用cv2.kmeans()数据聚类函数OpenCV 理解参数 输入参数 样品:它应该的np.float32数据类型,每个特性应该被放在一个单独的列。 nclusters(K):数量的集群需要结束 标准:这是迭代终止准则。 当这个标准是满足,算法迭代停止。 实际上,它应该是一个元组的三个参数。 他们是(type,max...
K-means算法MacQueen在1967年提出的,是最简单与最常见数据分类方法之一并且最为一种常见数据分析技术在机器学习、数据挖掘、模式识别、图像分析等领域都用应用。从机器学习的角度看,K-means属于一种无监督的机器学习方法。无监督学习(Unsupervised Learning)简单的说就是在不给定正确答案(标签)的情况下,在数据中找到一...
了解如何在OpenCV中使用cv.kmeans()函数进行数据聚类 理解参数 输入参数 sample:它应该是np.float32数据类型,并且每个功能都应该放在单个列中。 nclusters(K):结束条件所需的簇数 criteria:这是迭代终止条件。满足此条件后,算法迭代将停止。实际上,它应该是3个参数的元组。它们是(type,max_iter,epsilon): ...