车牌识别的属于常见的 模式识别 ,其基本流程为下面三个步骤:1) 分割: 检测并检测图像中感兴趣区域;2)特征提取: 对字符图像集中的每个部分进行提取;3)分类: 判断图像快是不是车牌或者 每个车牌字符的分类。 车牌识别分为两个步骤, 车牌检测, 车牌识别, 都属于模式识别。基本结构如下:一、车牌检测 1、车牌局部化...
最后,我们将再次使用drawContour函数显示过滤后的轮廓。 接下来,找到最适合车牌的形状,即矩形。为此,我们将遍历其余所有轮廓,并应用arcLength和roximatePolyDP函数近似闭合轮廓。找到后,我们将使用boundingRect函数来定位要裁剪的角点。 4.找到矩形后,该形状内的信息将为车牌号。 找到...
为了过滤获得的结果中的车牌图像,我们将遍历所有结果,并检查其具有四个侧面和闭合图形的矩形轮廓。由于车牌肯定是四边形的矩形。 forcincnts:# approximate the contourperi = cv2.arcLength(c,True)approx = cv2.approxPolyDP(c,0.018* peri,True)# if our approximated co...
OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。OpenCV的应用领域包括机器人视觉、模式识别、机器学习、工厂自动化生产线产品检测、医学影像、摄像机标定、遥感图像等。 现在,汽车的踪影无处不在,公路上疾驰,大街边临停,小区中停靠,车库里停泊。所以车牌识别...
本节是 OpenCV 车牌识别的第一节课,主要完成了车牌定位的工作。具体流程: 2、项目搭建 Demo 使用 Visual Studio 开发,有关 Visual Studio 配置 OpenCV 项目的详细过程在上一篇文章中已经介绍过,这里就只是再简单提一下。 2.1 项目配置 在Visual Studio 中创建一个 CMake 项目 LicensePlateRecognition,配置 CMakeLi...
汽车牌照的自动识别技术是把处理图像的方法与计算机的软件技术相连接在一起,以准确识别出车牌牌照的字符为目的,将识别出的数据传送至交通实时管理系统,以最终实现交通监管的功能。在车牌自动识别系统中,从汽车图像的获取到车牌字符处理是一个复杂的过程,主要分为四个阶段:图像获取、车牌定位、字符分割以及字符识别。目前...
为了过滤获得的结果中的车牌图像,我们将遍历所有结果,并检查其具有四个侧面和闭合图形的矩形轮廓。由于车牌肯定是四边形的矩形。 forcincnts:# approximate the contourperi=cv2.arcLength(c,True)approx=cv2.approxPolyDP(c,0.018*peri,True)# if our approximated contour has four points, then# we can assume ...
我们可以使用OpenCV中的实例:C:\Program Files\OpenCV\samples\c.squares.c这是一个搜索图片中矩形的一个算法。我们只要稍微修改一下就可以实现定位车牌。 在这个实例中使用了canny算法进行边缘检测,然后二值化,接着用cvFindContours搜索轮廓,最后从找到的轮廓中根据角点的个数,角的度数和轮廓大小确定,矩形位置。以下...
OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。