本程序进行人脸检测时,使用了OpenCV中已经训练好的级联分类器haarcascade_frontalface_default.xml检测正面人脸,调用函数cv2.CascadeClassifier加载该级联分类器,然后使用函数faceCascade.detectMultiScale检测出图片中所有的人脸,该函数由分类器对象调用。 二、人脸识别 0、准备图片 1、LBPH人脸识别 代码 import cv2 import nu...
1、打开摄像头进行人脸识别 #导入相关库 import numpy as np import cv2 #要加载人脸检测相关的pre-trained分类器,级联检测器 detector = cv2.CascadeClassifier(r'C:\Users\lmy\AppData\Local\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\TempState\Downloads\opencv-4.1.2\data\haarcascades\haarcascade_fronta...
接下来要做的就是训练模型了。 这里我们用到了opencv的Facerecognizer类。opencv中所有的人脸识别模型都是来源于这个类,这个类为所有人脸识别算法提供了一种通用的接口。文档里的一个小段包含了我们接下来要用到的几个函数: OpenCV 自带了三个人脸识别算法:Eigenfaces,Fisherfaces 和局部二值模式直方图 (LBPH)。这里...
一、概述 案例:使用OpenCV训练模型并将自己识别出来。其中包含了训练模型、保存模型、使用模型 训练模型步骤: 1.加载采集好的数据文件,并将图片和图片对一个的标签存入vector 2.准备一个测试数据,ps:从采集的文件中取 3.实例化特征脸人脸识别模型EigenFaceRecognizer m
OpenCV中的人脸识别算法主要基于特征提取和分类器设计。模型训练的过程可以大致分为以下几个步骤: 人脸检测:首先,使用OpenCV的Haar级联分类器或深度学习模型(如MTCNN)来检测图像中的人脸。这一步骤是找到人脸在图像中的位置,以便后续进行特征提取和识别。 特征提取:在检测到人脸后,需要从人脸图像中提取出有意义的特征。
2|0第一部分:人脸检测关于如何进行人脸检测,现在主流的方法有很多,像早期使用的Haar级联分类器,Opencv可以直接调用,使用方便、简单,但是准确性和鲁棒性都较低,且如果有使用过的经验的话,就会发现很容易受到光照等环境因素的影响。这里就不多赘述了,具体实现和原理可以参考https://www.cnblogs.com/zyly/p/9410563....
OpenCV4.1已经发布将近一年了,其人脸识别速度和性能有了一定的提高,这里我们使用opencv来做一个实时活体面部识别的demo 首先安装一些依赖的库 pip install opencv-python pip install opencv-contrib-python pip…
首先简要讲解数据集训练生成模型的原理,这里使用的是LBPH算法,在OpenCV模块中已经有内嵌的方法cv2.face.LBPHFaceRecognizer_create(),为了方便小伙伴们读懂之后的代码,在这里先举一个简单的人脸模型训练的小案例。 第一步:采集人脸数据,网络上有许多案例Demo,不再赘述,代码如下: ...
基于OpenCV和Keras的人脸识别系列手记: OpenCV初接触,图片的基本操作 使用OpenCV通过摄像头捕获实时视频并探测人脸、准备人脸数据 图片数据集预处理 利用人脸数据训练一个简单的神经网络模型 用CNN模型实现实时人脸识别 用Facenet模型提取人脸特征 通过K折交叉验证选取最佳的KNN模型实现人脸分类 ...
face_train.py #训练 Face_recognition.py #测试模型 二、人脸识别 FaceDiscern.py #人脸识别importcv2importsysfromPILimportImagedefCatchUsbVideo(window_name,camera_idx):cv2.namedWindow(window_name)#视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头cap=cv2.VideoCapture(camera_idx)#告诉OpenCV使用...