1.1 Text generation models OpenAI 的文本生成模型(通常被称为generative pre-trained transformers 模型...
OpenAITextEmbeddingGenerationService.GenerateEmbeddingsAsync Method Reference Feedback Definition Namespace: Microsoft.SemanticKernel.Connectors.OpenAI Assembly: Microsoft.SemanticKernel.Connectors.OpenAI.dll Package: Microsoft.SemanticKernel.Connectors.OpenAI v1.20.0 Important Som...
Custom OpenAI.OpenAIClient for HTTP requests. loggerFactory ILoggerFactory The ILoggerFactory to use for logging. If null, no logging will be performed. dimensions Nullable<Int32> The number of dimensions the resulting output embeddings should have. Only supported in "text-embed...
Text generation.Embeddings are used to generate more coherent and contextually relevant text. Machine translation.Text embeddings can capture semantic meanings across languages, which can improve the quality of machine translation process. Getting Set Up ...
First-generation models (not recommended) 第一代模型(不推荐) Use cases 用例 Obtaining the embeddings 获取嵌入 Data visualization in 2D 二维数据可视化 Embedding as a text feature encoder for ML algorithms 嵌入作为ML算法的文本特征编码器 Regression using the embedding features 使用嵌入特征的回归 ...
Adds two new 3rd-generation (gen-3) embedding models for OpenAI embeddings: text-embedding-3-small and text-embedding-3-large. When I try to select and use one of the new models, it works, but I ge...
We believe our research will eventually lead to artificial general intelligence, a system that can solve human-level problems. Building safe and beneficial AGI is our mission.
/// /// Unit tests for <see cref="HuggingFaceTextEmbeddingGeneration"/> class. /// public class HuggingFaceEmbeddingGenerationTests : IDisposable { private const string Endpoint = "http://localhost:5000/embeddings";private const string Model = @"GanymedeNil/text2vec-large-chinese"; private...
[CVPR 2022]AllenAI|Simple but Effective: CLIP Embeddings for Embodied AI|[paper][code]遥感领域的...
split_docs = text_splitter.split_documents(documents) # 初始化 openai 的 embeddings 对象 embeddings = OpenAIEmbeddings() #将 document 通过 openai 的 embeddings 对象计算 embedding 向量信息并临时存入 Chroma 向量数据库,用于后续匹配查询 docsearch = Chroma.from_documents(split_docs, embeddings) ...