具体来说,CLIP 先学习到合适的文字和图像的表示,在后续的 zero-shot image classification 任务中,给定图像和候选文字,模型可以选择与图像最为匹配的文字作为分类结果。CLIP 模型后续也被很多其他需要跨模态的模型利用和微调。 内容 一、背景 之前的图像分类模型,输入是图像,输出是实现预定好的 1000 类(或者 18291 ...
最近,PicCollage 公司的研究者对这一课题展开了研究,他们在自己的内容产品上对 CLIP 模型的性能进行了测试,并且获得了满意的效果。不过很快发现了 CLIP 模型的一个奇怪点:在搜索查询中优先考虑文本相似度而不是语义相似度。他们想要解决 CLIP 模型过分重视文本相似度的问题,以此获得更相关的搜索结果。 除此之外,研究...
完成这个任务,需要CLIP模型学会识别图像中的各种视觉概念,并将概念和图片相关联。因此,CLIP模型可以应用于几乎任意的视觉分类任务。例如,如果一个数据集的任务是对狗与猫的照片进行分类,而CLIP模型预测 "一张狗的照片 "和 "一张猫的照片 "这两个文字描述哪个更匹配。 如上图所示,CLIP网络工作流程:预训练图编码器...
CLIP 是一个零样本分类器,因此首先针对少样本学习模型测试 CLIP 是有意义的。 因此,作者针对由高质量预训练模型(例如 ResNet)之上的线性分类器组成的模型测试了 CLIP。 结果如图4所示: CLIP 明显优于其他分类器。 此外,CLIP 能够与 16-shot 线性分类器 BiT-M 的性能相媲美。 换句话说,BiT-M 的分类器必须在...
OpenAI 的 CLIP 模型在匹配图像与文本类别方面非常强大,但原始 CLIP 模型是在 4 亿多个图像 - 文本对上训练的,耗费了相当大的算力。来自 PicCollage 公司的研究者最近进行了缩小 CLIP 模型尺寸的研究,并取得了出色的效果。 今年1 月初,OpenAI 打破了自然语言与视觉的次元壁,接连推出了两个连接文本与图像的神经网...
文章首先指出,在少样本(few-shot)微调过程中,直接采用预训练的CLIP模型可能导致灾难性遗忘和过拟合。此...
1)CLIP图像编码器 CLIP是一个训练好的图像文本匹配模型,可以将一张图像编码成一个固定长度的向量,包含了图像的语义信息。DALL-E 3利用CLIP的图像编码器,将训练图像编码为图像特征向量,作为条件文本生成的一部分输入。2)GPT语言模型 DALL-E 3基于GPT架构建立语言模型,通过最大化随机抽取文本序列的联合概率,学习生成...
CLIP的设计灵感在于将图像和文本映射到共享的向量空间,使得模型能够理解它们之间的语义关系。这种共享向量...
OpenAI团队表明,人工智能系统可能会像人类一样将这些知识内部化。CLIP模型意味着未来AI会形成更复杂的视觉系统,识别出更复杂目标。但这一切处于初级阶段。现在任何人在苹果上贴上带有“iPod”字样的字条,CLIP之类的模型都无法准确的识别。如在案例中,CLIP 不仅回应了存钱罐的图片,也响应了一串串的美元符号。与上面...
在2021年1月,OpenAI宣布了两个新模型:DALL-E和CLIP,它们都是以某种方式连接文本和图像的多模态模型。CLIP全称是Contrastive Language–Image Pre-training,一种基于对比文本-图像对的预训练方法。为什么要介绍CLIP呢?因为现在大火得Stable Diffusion 并不是单一模型,而是多个模型组成。其中会用到一个 Text encoder 将用...