调用API 的 Endpoint 点击View Code查看代码,可直接API调用。
UPDATE:In July 2023 theOpenAI blogincluded an announcement that theEditsAPI endpoint is being deprecated in January 2024. The blog states “The Edits API beta was an early exploratory API… We took the feedback…into account when developinggpt-3.5-turbo“. Thedemocode that follows will continue...
Realtime API Build low-latency, multimodal experiences, including speech-to-speech. Learn more Assistants API Build AI assistants within your own applications that can leverage models, tools, and knowledge to do complex, multi-step tasks.
Azure OpenAI API 使用 拿到API URL 和 API KEY 后,就可以使用 OpenAI API 了,这里用 curl 命令来测试一下,示例代码如下。 curl $AZURE_OPENAI_ENDPOINT/openai/deployments/$DEPLOYMENT_NAME/chat/completions\?api-version\=2023-06-31-preview \ -H "Content-Type: application/json" \ -H "api-key: $A...
接下来让我们部署模型。点击资源管理中的模型部署 → 管理部署。 页面会跳转到Azure AI Studio中,点击[create new deployment](这里我选择 gpt-35-turbo),输入[Deployment name],点击[Create]。 创建完成后,您可以点击[Chat],在窗口进行交流了。 调用API 的 Endpoint 点击View Code查看代码,可直接API调用。
Additionally, based on the continue.dev documentation, it seems that it can directly work with Ollama's API without requiring an OpenAI-compatible endpoint. So, you may want to explore this option as well. https://continue.dev/docs/reference/Model%20Providers/ollama ...
We need a way to set the OpenAI API Endpoint URL both in the examples and helper libraries. This is usually refered to as the "BASE_URL" in other languages and defaults to https://api.openai.com/v1. This needs to be able to be changed to run against OpenAI compatible APIs with ...
插件开发人员通过标准的 manifest 文件和 OpenAPI 规范格式 的 API 文档文件,指定一个或多个开放的 API Endpoint(指具体的某个 API)。这些文件定义了插件的功能,允许 ChatGPT 读取这些文件,并调用开发人员定义的 API。一句话描述就是:AI 模型充当了智能 API 的调用方。给定 API 规范和有关何时使用 API 的自然语...
如果使用 Azure OpenAI,还可以在配置的openai_config部分中指定 Azure OpenAI 部署名称、终结点 URL 和 API 版本。 Python client.create_endpoint( name="openai-completions-endpoint", config={"served_entities": [ {"name":"openai-completions","external_model": {"name":"gpt-3.5-turbo-instruct","p...
不论是GPT-4还是GPT3.5模型,一律为chat.completion,因为我们使用的 endpoint 就是对话补全。 usage:次查询所使用的 token 数,也即为计价依据。prompt_表示输入中使用的 token 数,completion_tokens为输出的 token数,那么总 token 数也就很容易计算了,total_tokens = prompt_tokens + completion_tokens 最后 ...